This is an on-going attempt to consolidate all interesting efforts in the area of understanding / interpreting / explaining / visualizing machine learning models.
* Towards A Rigorous Science of Interpretable Machine Learning _Doshi-Velez & Kim. 2017_ [pdf](https://arxiv.org/pdf/1702.08608.pdf)
* Visualizations of Deep Neural Networks in Computer Vision: A Survey. _Seifert et al. 2017_ [pdf](https://link.springer.com/chapter/10.1007/978-3-319-54024-5_6)
* How convolutional neural network see the world - A survey of convolutional neural network visualization methods. _Qin et al. 2018_ [pdf](https://arxiv.org/abs/1804.11191)
* A brief survey of visualization methods for deep learning models from the perspective of Explainable AI. _Chalkiadakis 2018_ [pdf](https://www.macs.hw.ac.uk/~ic14/IoannisChalkiadakis_RRR.pdf)
* AM: Visualizing higher-layer features of a deep network. _Erhan et al. 2009_ [pdf](https://www.researchgate.net/publication/265022827_Visualizing_Higher-Layer_Features_of_a_Deep_Network)
* DeepVis: Understanding Neural Networks through Deep Visualization. _Yosinski et al. 2015_ [pdf](http://yosinski.com/media/papers/Yosinski__2015__ICML_DL__Understanding_Neural_Networks_Through_Deep_Visualization__.pdf) | [url](http://yosinski.com/deepvis)
* MFV: Multifaceted Feature Visualization: Uncovering the different types of features learned by each neuron in deep neural networks. _Nguyen et al. 2016_ [pdf](http://www.evolvingai.org/files/mfv_icml_workshop_16.pdf) | [code](https://github.com/Evolving-AI-Lab/mfv)
* DGN-AM: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. _Nguyen et al. 2016_ [pdf](anhnguyen.me/project/synthesizing) | [code](https://github.com/Evolving-AI-Lab/synthesizing)
* PPGN: Plug and Play Generative Networks. _Nguyen et al. 2017_ [pdf](anhnguyen.me/project/ppgn/) | [code](https://github.com/Evolving-AI-Lab/ppgn)
* Diverse feature visualizations reveal invariances in early layers of deep neural networks. _Cadena et al. 2018_ [pdf](https://arxiv.org/pdf/1807.10589.pdf)
* __Network Dissection__ Quantifying Interpretability of Deep Visual Representations. Bau et al. 2017 [url](http://netdissect.csail.mit.edu/) | [pdf](http://netdissect.csail.mit.edu/final-network-dissection.pdf)
* __Net2Vec__ Quantifying and Explaining how Concepts are Encoded by Filters in Deep Neural Networks. Fong & Vedaldi 2018 [pdf](https://arxiv.org/abs/1801.03454)
* A Theoretical Explanation for Perplexing Behaviors of Backpropagation-based Visualizations. _Nie et al. 2018_ [pdf](https://arxiv.org/abs/1805.07039)
* Regional Multi-scale Approach for Visually Pleasing Explanations of Deep Neural Networks. _Seo et al. 2018_ [pdf](https://arxiv.org/pdf/1807.11720.pdf)
* RISE: Randomized Input Sampling for Explanation of Black-box Models. _Petsiuk et al. 2018_ [pdf](https://arxiv.org/pdf/1806.07421.pdf)
* LIME: Why should i trust you?: Explaining the predictions of any classifier. _Ribeiro et al. 2016_ [pdf](https://arxiv.org/pdf/1602.04938.pdf) | [blog](https://homes.cs.washington.edu/~marcotcr/blog/lime/)
* Yang, S. C. H., & Shafto, P. Explainable Artificial Intelligence via Bayesian Teaching. NIPS 2017 [pdf](http://shaftolab.com/assets/papers/yangShafto_NIPS_2017_machine_teaching.pdf)
* A Peek Into the Hidden Layers of a Convolutional Neural Network Through a Factorization Lens. _Saini et al. 2018_ [pdf](https://arxiv.org/abs/1806.02012)
* Explainable AI for Designers: A Human-Centered Perspective on Mixed-Initiative Co-Creation [pdf](http://www.antoniosliapis.com/papers/explainable_ai_for_designers.pdf)
* NLIZE: A Perturbation-Driven Visual Interrogation Tool for Analyzing and Interpreting Natural Language Inference Models. _Liu et al. 2018_ [pdf](http://www.sci.utah.edu/~shusenl/publications/paper_entailVis.pdf)