XAI-papers/README.md

75 lines
6.0 KiB
Markdown
Raw Normal View History

2018-06-04 04:21:59 +08:00
# Papers on Explainable Artificial Intelligence
2017-12-22 02:34:13 +08:00
2018-06-04 04:21:59 +08:00
This is an on-going attempt to consolidate all interesting efforts in the area of understanding / interpreting / explaining / visualizing machine learning models.
2017-12-22 02:34:13 +08:00
---------------------------------------
2018-06-04 12:33:40 +08:00
# GUI tools
2018-06-15 03:53:48 +08:00
* DeepVis: Deep Visualization Toolbox. _Yosinski et al. 2015_ [code](https://github.com/yosinski/deep-visualization-toolbox) | [pdf](http://yosinski.com/deepvis)
2017-12-22 02:34:13 +08:00
2018-06-27 11:36:06 +08:00
# Demos and code
* https://github.com/tensorflow/lucid
2018-06-04 12:33:40 +08:00
# Surveys
2018-06-04 22:45:20 +08:00
* Methods for Interpreting and Understanding Deep Neural Networks. _Montavon et al. 2017_ [pdf](https://arxiv.org/pdf/1706.07979.pdf)
2018-06-04 22:45:41 +08:00
* The Mythos of Model Interpretability. _Lipton 2016_ [pdf](https://arxiv.org/abs/1606.03490)
2018-06-04 22:45:20 +08:00
* Towards A Rigorous Science of Interpretable Machine Learning _Doshi-Velez & Kim. 2017_ [pdf](https://arxiv.org/pdf/1702.08608.pdf)
* Visualizations of Deep Neural Networks in Computer Vision: A Survey. _Seifert et al. 2017_ [pdf](https://link.springer.com/chapter/10.1007/978-3-319-54024-5_6)
* How convolutional neural network see the world - A survey of convolutional neural network visualization methods. _Qin et al. 2018_ [pdf](https://arxiv.org/abs/1804.11191)
* A brief survey of visualization methods for deep learning models from the perspective of Explainable AI. _Chalkiadakis 2018_ [pdf](https://www.macs.hw.ac.uk/~ic14/IoannisChalkiadakis_RRR.pdf)
2018-06-04 04:21:59 +08:00
2018-06-04 13:13:11 +08:00
# Visualizing Preferred Stimuli
2018-06-04 12:20:52 +08:00
## Activation Maximization
2018-06-15 03:53:48 +08:00
* AM: Visualizing higher-layer features of a deep network. _Erhan et al. 2009_ [pdf](https://www.researchgate.net/publication/265022827_Visualizing_Higher-Layer_Features_of_a_Deep_Network)
* DeepVis: Understanding Neural Networks through Deep Visualization. _Yosinski et al. 2015_ [pdf](http://yosinski.com/media/papers/Yosinski__2015__ICML_DL__Understanding_Neural_Networks_Through_Deep_Visualization__.pdf) | [url](http://yosinski.com/deepvis)
* MFV: Multifaceted Feature Visualization: Uncovering the different types of features learned by each neuron in deep neural networks. _Nguyen et al. 2016_ [pdf](http://www.evolvingai.org/files/mfv_icml_workshop_16.pdf) | [code](https://github.com/Evolving-AI-Lab/mfv)
* DGN-AM: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. _Nguyen et al. 2016_ [pdf](anhnguyen.me/project/synthesizing) | [code](https://github.com/Evolving-AI-Lab/synthesizing)
* PPGN: Plug and Play Generative Networks. _Nguyen et al. 2017_ [pdf](anhnguyen.me/project/ppgn/) | [code](https://github.com/Evolving-AI-Lab/ppgn)
2018-06-04 12:33:40 +08:00
* Feature Visualization. _Olah et al. 2017_ [url](https://distill.pub/2017/feature-visualization)
2017-12-22 02:34:13 +08:00
2018-06-04 13:13:11 +08:00
## Real images / Segmentation Masks
2018-06-04 12:33:40 +08:00
* Object Detectors Emerge in Deep Scene CNNs. Zhou et al. 2015 [pdf](https://arxiv.org/abs/1412.6856)
2018-06-15 03:50:54 +08:00
* __Network Dissection__ Quantifying Interpretability of Deep Visual Representations. Bau et al. 2017 [url](http://netdissect.csail.mit.edu/) | [pdf](http://netdissect.csail.mit.edu/final-network-dissection.pdf)
* __Net2Vec__ Quantifying and Explaining how Concepts are Encoded by Filters in Deep Neural Networks. Fong & Vedaldi 2018 [pdf](https://arxiv.org/abs/1801.03454)
2018-06-04 12:33:40 +08:00
2018-06-05 22:36:21 +08:00
# Heatmaps / Attribution
2018-06-26 12:11:16 +08:00
### White-box
2018-06-04 04:26:26 +08:00
* Learning how to explain neural networks: PatternNet and PatternAttribution [pdf](https://arxiv.org/abs/1705.05598)
2018-06-07 22:16:54 +08:00
* A Theoretical Explanation for Perplexing Behaviors of Backpropagation-based Visualizations. _Nie et al. 2018_ [pdf](https://arxiv.org/abs/1805.07039)
2018-06-04 04:25:57 +08:00
* A Taxonomy and Library for Visualizing Learned Features in Convolutional Neural Networks [pdf](https://arxiv.org/pdf/1606.07757.pdf)
2018-06-05 22:36:56 +08:00
* How Important Is a Neuron? _Dhamdhere et al._ 2018 [pdf](https://arxiv.org/pdf/1805.12233.pdf)
2018-06-15 03:53:48 +08:00
* CAM:
2018-06-26 12:11:16 +08:00
* Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. _Selvaraju et al. 2017_ [pdf](https://arxiv.org/abs/1610.02391)
* Grad-CAM++:
2018-06-15 03:47:59 +08:00
* Unreliable saliency maps
2018-06-15 03:53:48 +08:00
* LRP: Beyond saliency: understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation [pdf](https://arxiv.org/abs/1712.08268)
* DTD: Explaining NonLinear Classification Decisions With Deep Tayor Decomposition [pdf](https://arxiv.org/abs/1512.02479)
2018-01-13 05:59:18 +08:00
2018-06-26 12:11:16 +08:00
### Black-box
* RISE: Randomized Input Sampling for Explanation of Black-box Models. _Petsiuk et al. 2018_ [pdf](https://arxiv.org/pdf/1806.07421.pdf)
* LIME: Why should i trust you?: Explaining the predictions of any classifier. _Ribeiro et al. 2016_ [pdf](https://arxiv.org/pdf/1602.04938.pdf) | [blog](https://homes.cs.washington.edu/~marcotcr/blog/lime/)
2018-06-04 13:13:11 +08:00
# Inverting Neural Networks
2018-04-20 02:50:43 +08:00
* Understanding Deep Image Representations by Inverting Them [pdf](https://arxiv.org/abs/1412.0035)
* Inverting Visual Representations with Convolutional Networks [pdf](https://arxiv.org/abs/1506.02753)
* Neural network inversion beyond gradient descent [pdf](http://opt-ml.org/papers/OPT2017_paper_38.pdf)
2018-06-04 13:13:11 +08:00
# Bayesian approaches
2018-04-20 02:44:37 +08:00
* Yang, S. C. H., & Shafto, P. Explainable Artificial Intelligence via Bayesian Teaching. NIPS 2017 [pdf](http://shaftolab.com/assets/papers/yangShafto_NIPS_2017_machine_teaching.pdf)
2018-02-17 04:52:30 +08:00
2018-06-04 13:13:11 +08:00
# Distilling DNNs into more interpretable models
2018-04-20 02:44:04 +08:00
* Interpreting CNNs via Decision Trees [pdf](https://arxiv.org/abs/1802.00121)
* Distilling a Neural Network Into a Soft Decision Tree [pdf](https://arxiv.org/abs/1711.09784)
2018-02-23 07:36:37 +08:00
2018-06-05 22:36:21 +08:00
# Learning to explain
2018-04-20 02:44:04 +08:00
* Deep Learning for Case-Based Reasoning through Prototypes [pdf](https://arxiv.org/pdf/1710.04806.pdf)
2018-06-03 04:27:13 +08:00
* Unsupervised Learning of Neural Networks to Explain Neural Networks [pdf](https://arxiv.org/abs/1805.07468)
2018-04-20 02:37:51 +08:00
2018-06-07 21:59:20 +08:00
# Understanding via Mathematical and Statistical tools
2018-04-20 02:44:04 +08:00
* Understanding Deep Architectures by Interpretable Visual Summaries [pdf](https://arxiv.org/pdf/1801.09103.pdf)
2018-06-07 22:16:54 +08:00
* A Peek Into the Hidden Layers of a Convolutional Neural Network Through a Factorization Lens. _Saini et al. 2018_ [pdf](https://arxiv.org/abs/1806.02012)
2018-06-26 11:55:15 +08:00
# Applications
* Explainable AI for Designers: A Human-Centered Perspective on Mixed-Initiative Co-Creation [pdf](http://www.antoniosliapis.com/papers/explainable_ai_for_designers.pdf)
2018-08-04 04:06:50 +08:00
* ICADx: Interpretable computer aided diagnosis of breast masses. _Kim et al. 2018_ [pdf](https://arxiv.org/abs/1805.08960)