This is an on-going attempt to consolidate all interesting efforts in the area of understanding / interpreting / explaining / visualizing machine learning models.
* Methods for Interpreting and Understanding Deep Neural Networks [pdf](https://arxiv.org/pdf/1706.07979.pdf)
* The Mythos of Model Interpretability [pdf](https://arxiv.org/abs/1606.03490)
* Towards A Rigorous Science of Interpretable Machine Learning [pdf](https://arxiv.org/pdf/1702.08608.pdf)
* Visualizations of Deep Neural Networks in Computer Vision: A Survey (Seifert et al. 2017) [pdf](https://link.springer.com/chapter/10.1007/978-3-319-54024-5_6)
* How convolutional neural network see the world - A survey of convolutional neural network visualization methods (Qin et al. 2018) [pdf](https://arxiv.org/abs/1804.11191)
* A brief survey of visualization methods for deep learning models from the perspective of Explainable AI (Chalkiadakis 2018) [pdf](https://www.macs.hw.ac.uk/~ic14/IoannisChalkiadakis_RRR.pdf)
* Visualizing higher-layer features of a deep network. _Erhan et al. 2009_ [pdf](https://www.researchgate.net/publication/265022827_Visualizing_Higher-Layer_Features_of_a_Deep_Network)
* Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. _Nguyen et al. 2016_ [code](https://github.com/Evolving-AI-Lab/synthesizing) | [pdf](anhnguyen.me/project/synthesizing)
* Object Detectors Emerge in Deep Scene CNNs. Zhou et al. 2015 [pdf](https://arxiv.org/abs/1412.6856)
* Network Dissection: Quantifying Interpretability of Deep Visual Representations. Bau et al. 2017 [url](http://netdissect.csail.mit.edu/) | [pdf](http://netdissect.csail.mit.edu/final-network-dissection.pdf)
* Net2Vec: Quantifying and Explaining how Concepts are Encoded by Filters in Deep Neural Networks. Fong & Vedaldi 2018 [pdf](https://arxiv.org/abs/1801.03454)
* Yang, S. C. H., & Shafto, P. Explainable Artificial Intelligence via Bayesian Teaching. NIPS 2017 [pdf](http://shaftolab.com/assets/papers/yangShafto_NIPS_2017_machine_teaching.pdf)