XAI-papers/README.md

58 lines
4.2 KiB
Markdown
Raw Normal View History

2018-06-04 04:21:59 +08:00
# Papers on Explainable Artificial Intelligence
2017-12-22 02:34:13 +08:00
2018-06-04 04:21:59 +08:00
This is an on-going attempt to consolidate all interesting efforts in the area of understanding / interpreting / explaining / visualizing machine learning models.
2017-12-22 02:34:13 +08:00
---------------------------------------
2018-06-04 12:33:40 +08:00
# GUI tools
2018-06-04 04:34:06 +08:00
* Deep Visualization Toolbox. _Yosinski et al. 2015_ [code](https://github.com/yosinski/deep-visualization-toolbox) | [pdf](http://yosinski.com/deepvis)
2017-12-22 02:34:13 +08:00
2018-06-04 12:33:40 +08:00
# Surveys
2018-06-04 04:21:59 +08:00
* Methods for Interpreting and Understanding Deep Neural Networks [pdf](https://arxiv.org/pdf/1706.07979.pdf)
* The Mythos of Model Interpretability [pdf](https://arxiv.org/abs/1606.03490)
* Towards A Rigorous Science of Interpretable Machine Learning [pdf](https://arxiv.org/pdf/1702.08608.pdf)
* Visualizations of Deep Neural Networks in Computer Vision: A Survey (Seifert et al. 2017) [pdf](https://link.springer.com/chapter/10.1007/978-3-319-54024-5_6)
* How convolutional neural network see the world - A survey of convolutional neural network visualization methods (Qin et al. 2018) [pdf](https://arxiv.org/abs/1804.11191)
* A brief survey of visualization methods for deep learning models from the perspective of Explainable AI (Chalkiadakis 2018) [pdf](https://www.macs.hw.ac.uk/~ic14/IoannisChalkiadakis_RRR.pdf)
2018-06-04 12:33:40 +08:00
# Feature Visualization
2018-06-04 12:20:52 +08:00
## Activation Maximization
2018-06-04 04:32:28 +08:00
* Visualizing higher-layer features of a deep network. _Erhan et al. 2009_ [pdf](https://www.researchgate.net/publication/265022827_Visualizing_Higher-Layer_Features_of_a_Deep_Network)
* Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. _Nguyen et al. 2016_ [code](https://github.com/Evolving-AI-Lab/synthesizing) | [pdf](anhnguyen.me/project/synthesizing)
2018-06-04 04:33:14 +08:00
* Plug and Play Generative Networks. _Nguyen et al. 2017_ [pdf](anhnguyen.me/project/ppgn/) | [code](https://github.com/Evolving-AI-Lab/ppgn)
2018-06-04 12:33:40 +08:00
* Feature Visualization. _Olah et al. 2017_ [url](https://distill.pub/2017/feature-visualization)
2017-12-22 02:34:13 +08:00
2018-06-04 12:33:40 +08:00
## Segmentation Masks
* Object Detectors Emerge in Deep Scene CNNs. Zhou et al. 2015 [pdf](https://arxiv.org/abs/1412.6856)
* Network Dissection: Quantifying Interpretability of Deep Visual Representations. Bau et al. 2017 [url](http://netdissect.csail.mit.edu/) | [pdf](http://netdissect.csail.mit.edu/final-network-dissection.pdf)
* Net2Vec: Quantifying and Explaining how Concepts are Encoded by Filters in Deep Neural Networks. Fong & Vedaldi 2018 [pdf](https://arxiv.org/abs/1801.03454)
## Heatmaps
2018-06-04 04:26:26 +08:00
* Learning how to explain neural networks: PatternNet and PatternAttribution [pdf](https://arxiv.org/abs/1705.05598)
2018-06-03 04:21:47 +08:00
* A Theoretical Explanation for Perplexing Behaviors of Backpropagation-based Visualizations [pdf](https://arxiv.org/abs/1805.07039)
2018-06-04 04:25:57 +08:00
* A Taxonomy and Library for Visualizing Learned Features in Convolutional Neural Networks [pdf](https://arxiv.org/pdf/1606.07757.pdf)
2017-12-26 06:18:35 +08:00
2018-01-13 05:59:18 +08:00
### Layer-wise Backpropagation
2018-04-20 02:44:37 +08:00
* Beyond saliency: understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation [pdf](https://arxiv.org/abs/1712.08268)
* Explaining NonLinear Classification Decisions With Deep Tayor Decomposition [pdf](https://arxiv.org/abs/1512.02479)
2018-01-13 05:59:18 +08:00
2018-06-04 12:20:52 +08:00
## Inverting Neural Networks
2018-04-20 02:50:43 +08:00
* Understanding Deep Image Representations by Inverting Them [pdf](https://arxiv.org/abs/1412.0035)
* Inverting Visual Representations with Convolutional Networks [pdf](https://arxiv.org/abs/1506.02753)
* Neural network inversion beyond gradient descent [pdf](http://opt-ml.org/papers/OPT2017_paper_38.pdf)
2018-06-04 12:20:52 +08:00
## Bayesian approaches
2017-12-26 06:18:35 +08:00
2018-04-20 02:44:37 +08:00
* Yang, S. C. H., & Shafto, P. Explainable Artificial Intelligence via Bayesian Teaching. NIPS 2017 [pdf](http://shaftolab.com/assets/papers/yangShafto_NIPS_2017_machine_teaching.pdf)
2018-02-17 04:52:30 +08:00
2018-06-04 12:20:52 +08:00
## Distilling DNNs into more interpretable models
2018-04-20 02:44:04 +08:00
* Interpreting CNNs via Decision Trees [pdf](https://arxiv.org/abs/1802.00121)
* Distilling a Neural Network Into a Soft Decision Tree [pdf](https://arxiv.org/abs/1711.09784)
2018-02-23 07:36:37 +08:00
2018-06-04 12:20:52 +08:00
## DNNs that learn to explain
2018-04-20 02:44:04 +08:00
* Deep Learning for Case-Based Reasoning through Prototypes [pdf](https://arxiv.org/pdf/1710.04806.pdf)
2018-06-03 04:27:13 +08:00
* Unsupervised Learning of Neural Networks to Explain Neural Networks [pdf](https://arxiv.org/abs/1805.07468)
2018-04-20 02:37:51 +08:00
2018-06-04 12:20:52 +08:00
## Others
2018-04-20 02:44:04 +08:00
* Understanding Deep Architectures by Interpretable Visual Summaries [pdf](https://arxiv.org/pdf/1801.09103.pdf)