pytorch-dnc/tasks/copy_task.py

161 lines
5.0 KiB
Python

#!/usr/bin/env python3
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import getopt
import sys
import os
import math
import time
import argparse
sys.path.insert(0, os.path.join('..', '..'))
import torch as T
from torch.autograd import Variable as var
import torch.nn.functional as F
import torch.optim as optim
from torch.nn.utils import clip_grad_norm
from dnc.dnc import DNC
parser = argparse.ArgumentParser(description='PyTorch Differentiable Neural Computer')
parser.add_argument('-input_size', type=int, default= 6, help='dimension of input feature')
parser.add_argument('-rnn_type', type=str, default='lstm', help='type of recurrent cells to use for the controller')
parser.add_argument('-nhid', type=int, default=64, help='humber of hidden units of the inner nn')
parser.add_argument('-nlayer', type=int, default=2, help='number of layers')
parser.add_argument('-lr', type=float, default=1e-2, help='initial learning rate')
parser.add_argument('-clip', type=float, default=0.5, help='gradient clipping')
parser.add_argument('-batch_size', type=int, default=100, metavar='N', help='batch size')
parser.add_argument('-mem_size', type=int, default=16, help='memory dimension')
parser.add_argument('-mem_slot', type=int, default=15, help='number of memory slots')
parser.add_argument('-read_heads', type=int, default=1, help='number of read heads')
parser.add_argument('-sequence_max_length', type=int, default=4, metavar='N', help='sequence_max_length')
parser.add_argument('-cuda', type=int, default=-1, help='Cuda GPU ID, -1 for CPU')
parser.add_argument('-log-interval', type=int, default=200, metavar='N', help='report interval')
parser.add_argument('-iterations', type=int, default=100000, metavar='N', help='total number of iteration')
parser.add_argument('-summarize_freq', type=int, default=100, metavar='N', help='summarize frequency')
parser.add_argument('-check_freq', type=int, default=100, metavar='N', help='check point frequency')
args = parser.parse_args()
print(args)
if args.cuda != -1:
print('Using CUDA.')
T.manual_seed(1111)
else:
print('Using CPU.')
def llprint(message):
sys.stdout.write(message)
sys.stdout.flush()
def generate_data(batch_size, length, size, cuda=-1):
input_data = np.zeros((batch_size, 2 * length + 1, size), dtype=np.float32)
target_output = np.zeros((batch_size, 2 * length + 1, size), dtype=np.float32)
sequence = np.random.binomial(1, 0.5, (batch_size, length, size - 1))
input_data[:, :length, :size - 1] = sequence
input_data[:, length, -1] = 1 # the end symbol
target_output[:, length + 1:, :size - 1] = sequence
input_data = T.from_numpy(input_data)
target_output = T.from_numpy(target_output)
if cuda != -1:
input_data = input_data.cuda()
target_output = target_output.cuda()
return var(input_data), var(target_output)
def criterion(predictions, targets):
return T.mean(
-1 * F.logsigmoid(predictions) * (targets) - T.log(1 - F.sigmoid(predictions) + 1e-9) * (1 - targets)
)
if __name__ == '__main__':
dirname = os.path.dirname(__file__)
ckpts_dir = os.path.join(dirname, 'checkpoints')
if not os.path.isdir(ckpts_dir):
os.mkdir(ckpts_dir)
batch_size = args.batch_size
sequence_max_length = args.sequence_max_length
iterations = args.iterations
summarize_freq = args.summarize_freq
check_freq = args.check_freq
# input_size = output_size = args.input_size
mem_slot = args.mem_slot
mem_size = args.mem_size
read_heads = args.read_heads
rnn = DNC(
input_size=args.input_size,
hidden_size=args.nhid,
rnn_type='lstm',
num_layers=args.nlayer,
nr_cells=mem_slot,
cell_size=mem_size,
read_heads=read_heads,
gpu_id=args.cuda
)
if args.cuda != -1:
rnn = rnn.cuda(args.cuda)
last_save_losses = []
optimizer = optim.Adam(rnn.parameters(), lr=args.lr)
for epoch in range(iterations + 1):
llprint("\rIteration {ep}/{tot}".format(ep=epoch, tot=iterations))
optimizer.zero_grad()
random_length = np.random.randint(1, sequence_max_length + 1)
input_data, target_output = generate_data(batch_size, random_length, args.input_size, args.cuda)
# input_data = input_data.transpose(0, 1).contiguous()
target_output = target_output.transpose(0, 1).contiguous()
output, _ = rnn(input_data, None)
output = output.transpose(0, 1)
loss = criterion((output), target_output)
# if np.isnan(loss.data.cpu().numpy()):
# llprint('\nGot nan loss, contine to jump the backward \n')
# apply_dict(locals())
loss.backward()
optimizer.step()
loss_value = loss.data[0]
summerize = (epoch % summarize_freq == 0)
take_checkpoint = (epoch != 0) and (epoch % check_freq == 0)
last_save_losses.append(loss_value)
if summerize:
llprint("\n\tAvg. Logistic Loss: %.4f\n" % (np.mean(last_save_losses)))
last_save_losses = []
if take_checkpoint:
llprint("\nSaving Checkpoint ... "),
check_ptr = os.path.join(ckpts_dir, 'step_{}.pth'.format(epoch))
cur_weights = rnn.state_dict()
T.save(cur_weights, check_ptr)
llprint("Done!\n")