#!/usr/bin/env python3 import warnings warnings.filterwarnings('ignore') import numpy as np import getopt import sys import os import math import time import argparse sys.path.insert(0, os.path.join('..', '..')) import torch as T from torch.autograd import Variable as var import torch.nn.functional as F import torch.optim as optim from torch.nn.utils import clip_grad_norm from dnc.dnc import DNC parser = argparse.ArgumentParser(description='PyTorch Differentiable Neural Computer') parser.add_argument('-input_size', type=int, default= 6, help='dimension of input feature') parser.add_argument('-rnn_type', type=str, default='lstm', help='type of recurrent cells to use for the controller') parser.add_argument('-nhid', type=int, default=64, help='humber of hidden units of the inner nn') parser.add_argument('-nlayer', type=int, default=2, help='number of layers') parser.add_argument('-lr', type=float, default=1e-2, help='initial learning rate') parser.add_argument('-clip', type=float, default=0.5, help='gradient clipping') parser.add_argument('-batch_size', type=int, default=100, metavar='N', help='batch size') parser.add_argument('-mem_size', type=int, default=16, help='memory dimension') parser.add_argument('-mem_slot', type=int, default=15, help='number of memory slots') parser.add_argument('-read_heads', type=int, default=1, help='number of read heads') parser.add_argument('-sequence_max_length', type=int, default=4, metavar='N', help='sequence_max_length') parser.add_argument('-cuda', type=int, default=-1, help='Cuda GPU ID, -1 for CPU') parser.add_argument('-log-interval', type=int, default=200, metavar='N', help='report interval') parser.add_argument('-iterations', type=int, default=100000, metavar='N', help='total number of iteration') parser.add_argument('-summarize_freq', type=int, default=100, metavar='N', help='summarize frequency') parser.add_argument('-check_freq', type=int, default=100, metavar='N', help='check point frequency') args = parser.parse_args() print(args) if args.cuda != -1: print('Using CUDA.') T.manual_seed(1111) else: print('Using CPU.') def llprint(message): sys.stdout.write(message) sys.stdout.flush() def generate_data(batch_size, length, size, cuda=-1): input_data = np.zeros((batch_size, 2 * length + 1, size), dtype=np.float32) target_output = np.zeros((batch_size, 2 * length + 1, size), dtype=np.float32) sequence = np.random.binomial(1, 0.5, (batch_size, length, size - 1)) input_data[:, :length, :size - 1] = sequence input_data[:, length, -1] = 1 # the end symbol target_output[:, length + 1:, :size - 1] = sequence input_data = T.from_numpy(input_data) target_output = T.from_numpy(target_output) if cuda != -1: input_data = input_data.cuda() target_output = target_output.cuda() return var(input_data), var(target_output) def criterion(predictions, targets): return T.mean( -1 * F.logsigmoid(predictions) * (targets) - T.log(1 - F.sigmoid(predictions) + 1e-9) * (1 - targets) ) if __name__ == '__main__': dirname = os.path.dirname(__file__) ckpts_dir = os.path.join(dirname, 'checkpoints') if not os.path.isdir(ckpts_dir): os.mkdir(ckpts_dir) batch_size = args.batch_size sequence_max_length = args.sequence_max_length iterations = args.iterations summarize_freq = args.summarize_freq check_freq = args.check_freq # input_size = output_size = args.input_size mem_slot = args.mem_slot mem_size = args.mem_size read_heads = args.read_heads rnn = DNC( input_size=args.input_size, hidden_size=args.nhid, rnn_type='lstm', num_layers=args.nlayer, nr_cells=mem_slot, cell_size=mem_size, read_heads=read_heads, gpu_id=args.cuda ) if args.cuda != -1: rnn = rnn.cuda(args.cuda) last_save_losses = [] optimizer = optim.Adam(rnn.parameters(), lr=args.lr) for epoch in range(iterations + 1): llprint("\rIteration {ep}/{tot}".format(ep=epoch, tot=iterations)) optimizer.zero_grad() random_length = np.random.randint(1, sequence_max_length + 1) input_data, target_output = generate_data(batch_size, random_length, args.input_size, args.cuda) # input_data = input_data.transpose(0, 1).contiguous() target_output = target_output.transpose(0, 1).contiguous() output, _ = rnn(input_data, None) output = output.transpose(0, 1) loss = criterion((output), target_output) # if np.isnan(loss.data.cpu().numpy()): # llprint('\nGot nan loss, contine to jump the backward \n') # apply_dict(locals()) loss.backward() optimizer.step() loss_value = loss.data[0] summerize = (epoch % summarize_freq == 0) take_checkpoint = (epoch != 0) and (epoch % check_freq == 0) last_save_losses.append(loss_value) if summerize: llprint("\n\tAvg. Logistic Loss: %.4f\n" % (np.mean(last_save_losses))) last_save_losses = [] if take_checkpoint: llprint("\nSaving Checkpoint ... "), check_ptr = os.path.join(ckpts_dir, 'step_{}.pth'.format(epoch)) cur_weights = rnn.state_dict() T.save(cur_weights, check_ptr) llprint("Done!\n")