132 lines
3.6 KiB
Python
132 lines
3.6 KiB
Python
|
#!/usr/bin/env python3
|
|||
|
|
|||
|
import torch.nn as nn
|
|||
|
import torch as T
|
|||
|
import torch.nn.functional as F
|
|||
|
from torch.autograd import Variable as var
|
|||
|
import numpy as np
|
|||
|
import torch
|
|||
|
from torch.autograd import Variable
|
|||
|
import re
|
|||
|
import string
|
|||
|
|
|||
|
|
|||
|
def recursiveTrace(obj):
|
|||
|
print(type(obj))
|
|||
|
if hasattr(obj, 'grad_fn'):
|
|||
|
print(obj.grad_fn)
|
|||
|
recursiveTrace(obj.grad_fn)
|
|||
|
elif hasattr(obj, 'saved_variables'):
|
|||
|
print(obj.requires_grad, len(obj.saved_tensors), len(obj.saved_variables))
|
|||
|
[print(v) for v in obj.saved_variables]
|
|||
|
[recursiveTrace(v.grad_fn) for v in obj.saved_variables]
|
|||
|
|
|||
|
|
|||
|
def cuda(x, grad=False, gpu_id=-1):
|
|||
|
if gpu_id == -1:
|
|||
|
return var(x, requires_grad=grad)
|
|||
|
else:
|
|||
|
return var(x.pin_memory(), requires_grad=grad).cuda(gpu_id, async=True)
|
|||
|
|
|||
|
|
|||
|
def cudavec(x, grad=False, gpu_id=-1):
|
|||
|
if gpu_id == -1:
|
|||
|
return var(T.from_numpy(x), requires_grad=grad)
|
|||
|
else:
|
|||
|
return var(T.from_numpy(x).pin_memory(), requires_grad=grad).cuda(gpu_id, async=True)
|
|||
|
|
|||
|
|
|||
|
def cudalong(x, grad=False, gpu_id=-1):
|
|||
|
if gpu_id == -1:
|
|||
|
return var(T.from_numpy(x.astype(np.long)), requires_grad=grad)
|
|||
|
else:
|
|||
|
return var(T.from_numpy(x.astype(np.long)).pin_memory(), requires_grad=grad).cuda(gpu_id, async=True)
|
|||
|
|
|||
|
|
|||
|
def θ(a, b, dimA=2, dimB=2, normBy=2):
|
|||
|
"""Batchwise Cosine distance
|
|||
|
|
|||
|
Cosine distance
|
|||
|
|
|||
|
Arguments:
|
|||
|
a {Tensor} -- A 3D Tensor (b * m * w)
|
|||
|
b {Tensor} -- A 3D Tensor (b * r * w)
|
|||
|
|
|||
|
Keyword Arguments:
|
|||
|
dimA {number} -- exponent value of the norm for `a` (default: {2})
|
|||
|
dimB {number} -- exponent value of the norm for `b` (default: {1})
|
|||
|
|
|||
|
Returns:
|
|||
|
Tensor -- Batchwise cosine distance (b * r * m)
|
|||
|
"""
|
|||
|
a_norm = T.norm(a, normBy, dimA, keepdim=True).expand_as(a) + δ
|
|||
|
b_norm = T.norm(b, normBy, dimB, keepdim=True).expand_as(b) + δ
|
|||
|
|
|||
|
x = T.bmm(a, b.transpose(1, 2)).transpose(1, 2) / (
|
|||
|
T.bmm(a_norm, b_norm.transpose(1, 2)).transpose(1, 2) + δ)
|
|||
|
# apply_dict(locals())
|
|||
|
return x
|
|||
|
|
|||
|
|
|||
|
def σ(input, axis=1):
|
|||
|
"""Softmax on an axis
|
|||
|
|
|||
|
Softmax on an axis
|
|||
|
|
|||
|
Arguments:
|
|||
|
input {Tensor} -- input Tensor
|
|||
|
|
|||
|
Keyword Arguments:
|
|||
|
axis {number} -- axis on which to take softmax on (default: {1})
|
|||
|
|
|||
|
Returns:
|
|||
|
Tensor -- Softmax output Tensor
|
|||
|
"""
|
|||
|
input_size = input.size()
|
|||
|
|
|||
|
trans_input = input.transpose(axis, len(input_size) - 1)
|
|||
|
trans_size = trans_input.size()
|
|||
|
|
|||
|
input_2d = trans_input.contiguous().view(-1, trans_size[-1])
|
|||
|
soft_max_2d = F.softmax(input_2d)
|
|||
|
soft_max_nd = soft_max_2d.view(*trans_size)
|
|||
|
return soft_max_nd.transpose(axis, len(input_size) - 1)
|
|||
|
|
|||
|
δ = 1e-6
|
|||
|
|
|||
|
|
|||
|
def register_nan_checks(model):
|
|||
|
def check_grad(module, grad_input, grad_output):
|
|||
|
# print(module) you can add this to see that the hook is called
|
|||
|
print('hook called for ' + str(type(module)))
|
|||
|
if any(np.all(np.isnan(gi.data.cpu().numpy())) for gi in grad_input if gi is not None):
|
|||
|
print('NaN gradient in grad_input ' + type(module).__name__)
|
|||
|
|
|||
|
model.apply(lambda module: module.register_backward_hook(check_grad))
|
|||
|
|
|||
|
|
|||
|
def apply_dict(dic):
|
|||
|
for k, v in dic.items():
|
|||
|
apply_var(v, k)
|
|||
|
if isinstance(v, nn.Module):
|
|||
|
key_list = [a for a in dir(v) if not a.startswith('__')]
|
|||
|
for key in key_list:
|
|||
|
apply_var(getattr(v, key), key)
|
|||
|
for pk, pv in v._parameters.items():
|
|||
|
apply_var(pv, pk)
|
|||
|
|
|||
|
|
|||
|
def apply_var(v, k):
|
|||
|
if isinstance(v, Variable) and v.requires_grad:
|
|||
|
v.register_hook(check_nan_gradient(k))
|
|||
|
|
|||
|
|
|||
|
def check_nan_gradient(name=''):
|
|||
|
def f(tensor):
|
|||
|
if np.isnan(T.mean(tensor).data.cpu().numpy()):
|
|||
|
print('\nnan gradient of {} :'.format(name))
|
|||
|
# print(tensor)
|
|||
|
# assert 0, 'nan gradient'
|
|||
|
return tensor
|
|||
|
return f
|