#!/usr/bin/env python3 import torch.nn as nn import torch as T import torch.nn.functional as F from torch.autograd import Variable as var import numpy as np import torch from torch.autograd import Variable import re import string def recursiveTrace(obj): print(type(obj)) if hasattr(obj, 'grad_fn'): print(obj.grad_fn) recursiveTrace(obj.grad_fn) elif hasattr(obj, 'saved_variables'): print(obj.requires_grad, len(obj.saved_tensors), len(obj.saved_variables)) [print(v) for v in obj.saved_variables] [recursiveTrace(v.grad_fn) for v in obj.saved_variables] def cuda(x, grad=False, gpu_id=-1): if gpu_id == -1: return var(x, requires_grad=grad) else: return var(x.pin_memory(), requires_grad=grad).cuda(gpu_id, async=True) def cudavec(x, grad=False, gpu_id=-1): if gpu_id == -1: return var(T.from_numpy(x), requires_grad=grad) else: return var(T.from_numpy(x).pin_memory(), requires_grad=grad).cuda(gpu_id, async=True) def cudalong(x, grad=False, gpu_id=-1): if gpu_id == -1: return var(T.from_numpy(x.astype(np.long)), requires_grad=grad) else: return var(T.from_numpy(x.astype(np.long)).pin_memory(), requires_grad=grad).cuda(gpu_id, async=True) def θ(a, b, dimA=2, dimB=2, normBy=2): """Batchwise Cosine distance Cosine distance Arguments: a {Tensor} -- A 3D Tensor (b * m * w) b {Tensor} -- A 3D Tensor (b * r * w) Keyword Arguments: dimA {number} -- exponent value of the norm for `a` (default: {2}) dimB {number} -- exponent value of the norm for `b` (default: {1}) Returns: Tensor -- Batchwise cosine distance (b * r * m) """ a_norm = T.norm(a, normBy, dimA, keepdim=True).expand_as(a) + δ b_norm = T.norm(b, normBy, dimB, keepdim=True).expand_as(b) + δ x = T.bmm(a, b.transpose(1, 2)).transpose(1, 2) / ( T.bmm(a_norm, b_norm.transpose(1, 2)).transpose(1, 2) + δ) # apply_dict(locals()) return x def σ(input, axis=1): """Softmax on an axis Softmax on an axis Arguments: input {Tensor} -- input Tensor Keyword Arguments: axis {number} -- axis on which to take softmax on (default: {1}) Returns: Tensor -- Softmax output Tensor """ input_size = input.size() trans_input = input.transpose(axis, len(input_size) - 1) trans_size = trans_input.size() input_2d = trans_input.contiguous().view(-1, trans_size[-1]) soft_max_2d = F.softmax(input_2d) soft_max_nd = soft_max_2d.view(*trans_size) return soft_max_nd.transpose(axis, len(input_size) - 1) δ = 1e-6 def register_nan_checks(model): def check_grad(module, grad_input, grad_output): # print(module) you can add this to see that the hook is called print('hook called for ' + str(type(module))) if any(np.all(np.isnan(gi.data.cpu().numpy())) for gi in grad_input if gi is not None): print('NaN gradient in grad_input ' + type(module).__name__) model.apply(lambda module: module.register_backward_hook(check_grad)) def apply_dict(dic): for k, v in dic.items(): apply_var(v, k) if isinstance(v, nn.Module): key_list = [a for a in dir(v) if not a.startswith('__')] for key in key_list: apply_var(getattr(v, key), key) for pk, pv in v._parameters.items(): apply_var(pv, pk) def apply_var(v, k): if isinstance(v, Variable) and v.requires_grad: v.register_hook(check_nan_gradient(k)) def check_nan_gradient(name=''): def f(tensor): if np.isnan(T.mean(tensor).data.cpu().numpy()): print('\nnan gradient of {} :'.format(name)) # print(tensor) # assert 0, 'nan gradient' return tensor return f