117 lines
6.6 KiB
Markdown
117 lines
6.6 KiB
Markdown
# nlp_xiaojiang
|
||
|
||
|
||
# AugmentText
|
||
- 回译(效果比较好)
|
||
- EDA(同义词替换、插入、交换和删除)(效果还行)
|
||
- HMM-marko(质量较差)
|
||
- syntax(依存句法、句法、语法书)(简单句还可)
|
||
- seq2seq(深度学习同义句生成,效果不理想,seq2seq代码大都是 [https://github.com/qhduan/just_another_seq2seq] 的,效果不理想)
|
||
|
||
# ChatBot
|
||
- 检索式ChatBot
|
||
- 像ES那样直接检索(如使用fuzzywuzzy),只能字面匹配
|
||
- 构造句向量,检索问答库,能够检索有同义词的句子
|
||
- 生成式ChatBot(todo)
|
||
- seq2seq
|
||
- GAN
|
||
|
||
# ClassificationText
|
||
- bert+bi-lstm(keras) approach 0.78~0.79% acc of weBank Intelligent Customer Service Question Matching Competition
|
||
- bert + text-cnn(keras) approach 0.78~0.79% acc of weBank Intelligent Customer Service Question Matching Competition
|
||
- bert + r-cnn(keras) approach 0.78~0.79% acc of weBank Intelligent Customer Service Question Matching Competition
|
||
- bert + avt-cnn(keras) approach 0.78~0.79% acc of weBank Intelligent Customer Service Question Matching Competition
|
||
|
||
|
||
# FeatureProject
|
||
- bert句向量、文本相似度
|
||
- bert/extract_keras_bert_feature.py:提取bert句向量特征
|
||
- bert/tet_bert_keras_sim.py:测试bert句向量cosin相似度
|
||
- normalization_util指的是数据归一化
|
||
- 0-1归一化处理
|
||
- 均值归一化
|
||
- sig归一化处理
|
||
- sim feature(ML)
|
||
- distance_text_or_vec:各种计算文本、向量距离等
|
||
- distance_vec_TS_SS:TS_SS计算词向量距离
|
||
- cut_td_idf:将小黄鸡语料和gossip结合
|
||
- sentence_sim_feature:计算两个文本的相似度或者距离,例如qq(问题和问题),或者qa(问题和答案)
|
||
|
||
# run(可以在win10下,pycharm下运行)
|
||
- 1.创建tf-idf文件等(运行2需要先跑1):
|
||
```
|
||
python cut_td_idf.py
|
||
```
|
||
- 2.计算两个句子间的各种相似度,先计算一个预定义的,然后可输入自定义的(先跑1):
|
||
```
|
||
python sentence_sim_feature.py
|
||
```
|
||
- 3.chatbot_1跑起来(fuzzy检索-没)(独立):
|
||
```
|
||
python chatbot_fuzzy.py
|
||
```
|
||
- 4.chatbot_2跑起来(句向量检索-词)(独立):
|
||
```
|
||
python chatbot_sentence_vec_by_word.py
|
||
```
|
||
- 5.chatbot_3跑起来(句向量检索-字)(独立):
|
||
```
|
||
python chatbot_sentence_vec_by_char.py
|
||
```
|
||
- 6.数据增强(eda): python enhance_eda.py
|
||
- 7.数据增强(marko): python enhance_marko.py
|
||
- 8.数据增强(translate_account): python translate_tencent_secret.py
|
||
- 9.数据增强(translate_tools): python translate_translate.py
|
||
- 10.数据增强(translate_web): python translate_google.py
|
||
- 11.数据增强(augment_seq2seq): 先跑 python extract_char_webank.py生成数据,
|
||
再跑 python train_char_anti.py
|
||
然后跑 python predict_char_anti.py
|
||
- 12.特征计算(bert)(提取特征、计算相似度):
|
||
```
|
||
run extract_keras_bert_feature.py
|
||
run tet_bert_keras_sim.py
|
||
```
|
||
|
||
# Data
|
||
- chinese_L-12_H-768_A-12(谷歌预训练好的模型)
|
||
github项目中只是上传部分数据,需要的前往链接: https://pan.baidu.com/s/1I3vydhmFEQ9nuPG2fDou8Q 提取码: rket
|
||
解压后就可以啦
|
||
- chinese_vector
|
||
github项目中只是上传部分数据,需要的前往链接: https://pan.baidu.com/s/1I3vydhmFEQ9nuPG2fDou8Q 提取码: rket
|
||
- 截取的部分word2vec训练词向量(自己需要下载全效果才会好)
|
||
- w2v_model_wiki_char.vec、w2v_model_wiki_word.vec都只有部分
|
||
- corpus
|
||
github项目中只是上传部分数据,需要的前往链接: https://pan.baidu.com/s/1I3vydhmFEQ9nuPG2fDou8Q 提取码: rket
|
||
- webank(train、dev、test)
|
||
- 小黄鸡和gossip问答预料(数据没清洗),chicken_and_gossip.txt
|
||
- 微众银行和支付宝文本相似度竞赛数据, sim_webank.csv
|
||
- sentence_vec_encode_char
|
||
- 1.txt(字向量生成的前100000句向量)
|
||
- sentence_vec_encode_word
|
||
- 1.txt(词向量生成的前100000句向量)
|
||
- tf_idf(chicken_and_gossip.txt生成的tf-idf)
|
||
|
||
# requestments.txt
|
||
- python_Levenshtei
|
||
- 调用Levenshtein,我的python是3.6,
|
||
- 打开其源文件: https://www.lfd.uci.edu/~gohlke/pythonlibs/
|
||
- 查找python_Levenshtein-0.12.0-cp36-cp36m-win_amd64.whl下载即可
|
||
- pyemd
|
||
- pyhanlp
|
||
- 下好依赖JPype1-0.6.3-cp36-cp36m-win_amd64.whl
|
||
|
||
# 参考/感谢
|
||
* eda_chinese:[https://github.com/zhanlaoban/eda_nlp_for_Chinese](https://github.com/zhanlaoban/eda_nlp_for_Chinese)
|
||
* 主谓宾提取器:[https://github.com/hankcs/MainPartExtractor](https://github.com/hankcs/MainPartExtractor)
|
||
* HMM生成句子:[https://github.com/takeToDreamLand/SentenceGenerate_byMarkov](https://github.com/takeToDreamLand/SentenceGenerate_byMarkov)
|
||
* 同义词等:[https://github.com/fighting41love/funNLP/tree/master/data/](https://github.com/fighting41love/funNLP/tree/master/data/)
|
||
* 小牛翻译:[http://www.niutrans.com/index.html](http://www.niutrans.com/index.html)
|
||
|
||
# 其他资料
|
||
* bert(keras):[https://github.com/CyberZHG/keras-bert](https://github.com/CyberZHG/keras-bert)
|
||
* NLP数据增强汇总:[https://github.com/quincyliang/nlp-data-augmentation](https://github.com/quincyliang/nlp-data-augmentation)
|
||
* 知乎NLP数据增强话题:[https://www.zhihu.com/question/305256736/answer/550873100](https://www.zhihu.com/question/305256736/answer/550873100)
|
||
* chatbot_seq2seq_seqGan(比较好用):[https://github.com/qhduan/just_another_seq2seq](https://github.com/qhduan/just_another_seq2seq)
|
||
* 自己动手做聊天机器人教程: [https://github.com/warmheartli/ChatBotCourse](https://github.com/warmheartli/ChatBotCourse)
|
||
|