update_v1.0
This commit is contained in:
parent
c7f06f54e5
commit
b1203d9f25
@ -7,7 +7,6 @@ networkx==2.3
|
|||||||
gensim==3.7.3
|
gensim==3.7.3
|
||||||
scikit-learn==0.19.0 # to do... compatible with >0.20
|
scikit-learn==0.19.0 # to do... compatible with >0.20
|
||||||
pandas==0.23.0
|
pandas==0.23.0
|
||||||
psutil==5.6.3
|
|
||||||
|
|
||||||
# Enable GPU:
|
# Enable GPU:
|
||||||
# If using anaconda, run `conda install tensorflow-gpu==1.10.0`
|
# If using anaconda, run `conda install tensorflow-gpu==1.10.0`
|
||||||
@ -17,47 +16,3 @@ psutil==5.6.3
|
|||||||
|
|
||||||
# Or simply build from docker image: docker pull tensorflow/tensorflow:1.10.0-gpu-py3
|
# Or simply build from docker image: docker pull tensorflow/tensorflow:1.10.0-gpu-py3
|
||||||
# ref: https://www.tensorflow.org/install/docker#gpu_support
|
# ref: https://www.tensorflow.org/install/docker#gpu_support
|
||||||
|
|
||||||
|
|
||||||
'''
|
|
||||||
Package Version
|
|
||||||
--------------- --------
|
|
||||||
absl-py 0.7.1
|
|
||||||
astor 0.8.0
|
|
||||||
boto 2.49.0
|
|
||||||
boto3 1.9.160
|
|
||||||
botocore 1.12.160
|
|
||||||
certifi 2019.3.9
|
|
||||||
chardet 3.0.4
|
|
||||||
decorator 4.4.0
|
|
||||||
docutils 0.14
|
|
||||||
gast 0.2.2
|
|
||||||
gensim 3.7.3
|
|
||||||
grpcio 1.21.1
|
|
||||||
idna 2.8
|
|
||||||
jmespath 0.9.4
|
|
||||||
Markdown 3.1.1
|
|
||||||
mkl-fft 1.0.12
|
|
||||||
mkl-random 1.0.2
|
|
||||||
networkx 2.3
|
|
||||||
numpy 1.14.5
|
|
||||||
pandas 0.23.0
|
|
||||||
pip 19.1.1
|
|
||||||
protobuf 3.8.0
|
|
||||||
psutil 5.6.3
|
|
||||||
python-dateutil 2.8.0
|
|
||||||
pytz 2019.1
|
|
||||||
requests 2.22.0
|
|
||||||
s3transfer 0.2.0
|
|
||||||
scikit-learn 0.19.0
|
|
||||||
scipy 1.1.0
|
|
||||||
setuptools 39.1.0
|
|
||||||
six 1.12.0
|
|
||||||
smart-open 1.8.4
|
|
||||||
tensorboard 1.10.0
|
|
||||||
tensorflow 1.10.0
|
|
||||||
termcolor 1.1.0
|
|
||||||
urllib3 1.25.3
|
|
||||||
Werkzeug 0.15.4
|
|
||||||
wheel 0.33.4
|
|
||||||
'''
|
|
@ -96,8 +96,7 @@ class ABRW(object):
|
|||||||
# n*n*8 is the bytes required by pairwise similarity matrix; 2e9 = 2GB ROM remained for safety reason
|
# n*n*8 is the bytes required by pairwise similarity matrix; 2e9 = 2GB ROM remained for safety reason
|
||||||
# if your computer have 200G memory, there should be no problem for graph with 100k nodes
|
# if your computer have 200G memory, there should be no problem for graph with 100k nodes
|
||||||
# this naive implementation is **faster** than BallTree implementation, thanks to numpy
|
# this naive implementation is **faster** than BallTree implementation, thanks to numpy
|
||||||
#if n*n*8 + n*n*8 + n*5000*8 + 2e9 < free_memory and n < 1e5: # X_sim[n,n] dense + A[n,n] if dense + X[n,5000] if dense with max 5000 feats + 2e9 for safety
|
if False: # X_sim[n,n] dense + A[n,n] if dense + X[n,5000] if dense with max 5000 feats + 2e9 for safety
|
||||||
if False:
|
|
||||||
print('naive implementation + intro-select ')
|
print('naive implementation + intro-select ')
|
||||||
t1 = time.time()
|
t1 = time.time()
|
||||||
X_sim = pairwise_similarity(X.todense())
|
X_sim = pairwise_similarity(X.todense())
|
||||||
|
Loading…
Reference in New Issue
Block a user