From b1203d9f25d0996bd6c73e9437a6c9df74587d0e Mon Sep 17 00:00:00 2001 From: Chengbin Date: Thu, 28 May 2020 13:25:16 +0800 Subject: [PATCH] update_v1.0 --- requirements.txt | 45 --------------------------------------------- src/libnrl/abrw.py | 3 +-- 2 files changed, 1 insertion(+), 47 deletions(-) diff --git a/requirements.txt b/requirements.txt index 8c4f577..09e434e 100644 --- a/requirements.txt +++ b/requirements.txt @@ -7,7 +7,6 @@ networkx==2.3 gensim==3.7.3 scikit-learn==0.19.0 # to do... compatible with >0.20 pandas==0.23.0 -psutil==5.6.3 # Enable GPU: # If using anaconda, run `conda install tensorflow-gpu==1.10.0` @@ -17,47 +16,3 @@ psutil==5.6.3 # Or simply build from docker image: docker pull tensorflow/tensorflow:1.10.0-gpu-py3 # ref: https://www.tensorflow.org/install/docker#gpu_support - - -''' -Package Version ---------------- -------- -absl-py 0.7.1 -astor 0.8.0 -boto 2.49.0 -boto3 1.9.160 -botocore 1.12.160 -certifi 2019.3.9 -chardet 3.0.4 -decorator 4.4.0 -docutils 0.14 -gast 0.2.2 -gensim 3.7.3 -grpcio 1.21.1 -idna 2.8 -jmespath 0.9.4 -Markdown 3.1.1 -mkl-fft 1.0.12 -mkl-random 1.0.2 -networkx 2.3 -numpy 1.14.5 -pandas 0.23.0 -pip 19.1.1 -protobuf 3.8.0 -psutil 5.6.3 -python-dateutil 2.8.0 -pytz 2019.1 -requests 2.22.0 -s3transfer 0.2.0 -scikit-learn 0.19.0 -scipy 1.1.0 -setuptools 39.1.0 -six 1.12.0 -smart-open 1.8.4 -tensorboard 1.10.0 -tensorflow 1.10.0 -termcolor 1.1.0 -urllib3 1.25.3 -Werkzeug 0.15.4 -wheel 0.33.4 -''' \ No newline at end of file diff --git a/src/libnrl/abrw.py b/src/libnrl/abrw.py index a15cd19..e89ed13 100644 --- a/src/libnrl/abrw.py +++ b/src/libnrl/abrw.py @@ -96,8 +96,7 @@ class ABRW(object): # n*n*8 is the bytes required by pairwise similarity matrix; 2e9 = 2GB ROM remained for safety reason # if your computer have 200G memory, there should be no problem for graph with 100k nodes # this naive implementation is **faster** than BallTree implementation, thanks to numpy - #if n*n*8 + n*n*8 + n*5000*8 + 2e9 < free_memory and n < 1e5: # X_sim[n,n] dense + A[n,n] if dense + X[n,5000] if dense with max 5000 feats + 2e9 for safety - if False: + if False: # X_sim[n,n] dense + A[n,n] if dense + X[n,5000] if dense with max 5000 feats + 2e9 for safety print('naive implementation + intro-select ') t1 = time.time() X_sim = pairwise_similarity(X.todense())