update_v1.0
This commit is contained in:
parent
c7f06f54e5
commit
b1203d9f25
@ -7,7 +7,6 @@ networkx==2.3
|
||||
gensim==3.7.3
|
||||
scikit-learn==0.19.0 # to do... compatible with >0.20
|
||||
pandas==0.23.0
|
||||
psutil==5.6.3
|
||||
|
||||
# Enable GPU:
|
||||
# If using anaconda, run `conda install tensorflow-gpu==1.10.0`
|
||||
@ -17,47 +16,3 @@ psutil==5.6.3
|
||||
|
||||
# Or simply build from docker image: docker pull tensorflow/tensorflow:1.10.0-gpu-py3
|
||||
# ref: https://www.tensorflow.org/install/docker#gpu_support
|
||||
|
||||
|
||||
'''
|
||||
Package Version
|
||||
--------------- --------
|
||||
absl-py 0.7.1
|
||||
astor 0.8.0
|
||||
boto 2.49.0
|
||||
boto3 1.9.160
|
||||
botocore 1.12.160
|
||||
certifi 2019.3.9
|
||||
chardet 3.0.4
|
||||
decorator 4.4.0
|
||||
docutils 0.14
|
||||
gast 0.2.2
|
||||
gensim 3.7.3
|
||||
grpcio 1.21.1
|
||||
idna 2.8
|
||||
jmespath 0.9.4
|
||||
Markdown 3.1.1
|
||||
mkl-fft 1.0.12
|
||||
mkl-random 1.0.2
|
||||
networkx 2.3
|
||||
numpy 1.14.5
|
||||
pandas 0.23.0
|
||||
pip 19.1.1
|
||||
protobuf 3.8.0
|
||||
psutil 5.6.3
|
||||
python-dateutil 2.8.0
|
||||
pytz 2019.1
|
||||
requests 2.22.0
|
||||
s3transfer 0.2.0
|
||||
scikit-learn 0.19.0
|
||||
scipy 1.1.0
|
||||
setuptools 39.1.0
|
||||
six 1.12.0
|
||||
smart-open 1.8.4
|
||||
tensorboard 1.10.0
|
||||
tensorflow 1.10.0
|
||||
termcolor 1.1.0
|
||||
urllib3 1.25.3
|
||||
Werkzeug 0.15.4
|
||||
wheel 0.33.4
|
||||
'''
|
@ -96,8 +96,7 @@ class ABRW(object):
|
||||
# n*n*8 is the bytes required by pairwise similarity matrix; 2e9 = 2GB ROM remained for safety reason
|
||||
# if your computer have 200G memory, there should be no problem for graph with 100k nodes
|
||||
# this naive implementation is **faster** than BallTree implementation, thanks to numpy
|
||||
#if n*n*8 + n*n*8 + n*5000*8 + 2e9 < free_memory and n < 1e5: # X_sim[n,n] dense + A[n,n] if dense + X[n,5000] if dense with max 5000 feats + 2e9 for safety
|
||||
if False:
|
||||
if False: # X_sim[n,n] dense + A[n,n] if dense + X[n,5000] if dense with max 5000 feats + 2e9 for safety
|
||||
print('naive implementation + intro-select ')
|
||||
t1 = time.time()
|
||||
X_sim = pairwise_similarity(X.todense())
|
||||
|
Loading…
Reference in New Issue
Block a user