Update README.md
This commit is contained in:
parent
4f51b621de
commit
ec28007cac
@ -33,6 +33,8 @@ This is an on-going attempt to consolidate interesting efforts in the area of un
|
|||||||
|
|
||||||
#### Opinions
|
#### Opinions
|
||||||
* Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead _Rudin et al. Nature 2019_ [pdf](https://www.nature.com/articles/s42256-019-0048-x)
|
* Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead _Rudin et al. Nature 2019_ [pdf](https://www.nature.com/articles/s42256-019-0048-x)
|
||||||
|
* Towards falsifiable interpretability research. _Leavitt & Morcos 2020_ [pdf](https://arxiv.org/abs/2010.12016 "Issues with the current evaluation of attribution maps, feature visualization methods and Best practices for robust, falsifiable interpretability research")
|
||||||
|
|
||||||
|
|
||||||
#### Open research questions
|
#### Open research questions
|
||||||
* Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges. _Rudin et al 2021_ [pdf](https://arxiv.org/pdf/2103.11251.pdf "A list of traditional and emerging problems/challenges in the area of XAI / interpretable ML")
|
* Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges. _Rudin et al 2021_ [pdf](https://arxiv.org/pdf/2103.11251.pdf "A list of traditional and emerging problems/challenges in the area of XAI / interpretable ML")
|
||||||
|
Loading…
Reference in New Issue
Block a user