Added Counterfactual Explanations for Machine Learning
This commit is contained in:
parent
df03cbf2ef
commit
80aa7e6187
@ -198,6 +198,8 @@ This is an on-going attempt to consolidate interesting efforts in the area of un
|
||||
* Towards robust interpretability with self-explaining neural networks. _Alvarez-Melis and Jaakola 2018_ [pdf](http://people.csail.mit.edu/tommi/papers/SENN_paper.pdf)
|
||||
|
||||
# C. Counterfactual explanations
|
||||
|
||||
* Counterfactual Explanations for Machine Learning: A Review. _Verma et al. 2020_ [pdf](https://arxiv.org/pdf/2010.10596.pdf)
|
||||
* Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections. _Zhang et al. 2018_ [pdf](http://papers.nips.cc/paper/7736-interpreting-neural-network-judgments-via-minimal-stable-and-symbolic-corrections.pdf)
|
||||
* Counterfactual Visual Explanations. _Goyal et al. 2019_ [pdf](https://arxiv.org/pdf/1904.07451.pdf)
|
||||
* Generative Counterfactual Introspection for Explainable Deep Learning. _Liu et al. 2019_ [pdf](https://arxiv.org/abs/1907.03077)
|
||||
|
Loading…
Reference in New Issue
Block a user