XAI-papers/README.md

298 lines
34 KiB
Markdown
Raw Normal View History

2018-06-04 04:21:59 +08:00
# Papers on Explainable Artificial Intelligence
2017-12-22 02:34:13 +08:00
2019-02-21 02:58:35 +08:00
This is an on-going attempt to consolidate interesting efforts in the area of understanding / interpreting / explaining / visualizing *a pre-trained ML model*.
2017-12-22 02:34:13 +08:00
---------------------------------------
2018-06-04 12:33:40 +08:00
# GUI tools
2022-08-18 01:56:30 +08:00
* `DeepVis`: Deep Visualization Toolbox. _Yosinski et al. ICML 2015_ [code](https://github.com/yosinski/deep-visualization-toolbox) | [pdf](http://yosinski.com/deepvis)
* `SWAP`: Generate adversarial poses of objects in a 3D space. _Alcorn et al. CVPR 2019_ [code](https://github.com/airalcorn2/strike-with-a-pose) | [pdf](https://arxiv.org/abs/1811.11553)
* `AllenNLP`: Query online NLP models with user-provided inputs and observe explanations (Gradient, Integrated Gradient, SmoothGrad). _Last accessed 03/2020_ [demo](https://demo.allennlp.org/sentiment-analysis)
* `3DB`: A framework for analyzing computer vision models with simulated data [code](https://github.com/3db/3db/)
2017-12-22 02:34:13 +08:00
2019-02-21 02:58:35 +08:00
# Libraries
2020-10-18 21:34:57 +08:00
* [CNN visualizations](https://github.com/utkuozbulak/pytorch-cnn-visualizations) (feature visualization, PyTorch)
* [iNNvestigate](https://github.com/albermax/innvestigate) (attribution, Keras)
* [DeepExplain](https://github.com/marcoancona/DeepExplain) (attribution, Keras)
* [Lucid](https://github.com/tensorflow/lucid) (feature visualization, attribution, Tensorflow)
* [TorchRay](https://facebookresearch.github.io/TorchRay/) (attribution, PyTorch)
* [Captum](https://captum.ai/) (attribution, PyTorch)
2020-12-22 23:04:32 +08:00
* [InterpretML](https://github.com/interpretml/interpret) (attribution, Python)
2018-06-27 11:36:06 +08:00
2018-06-04 12:33:40 +08:00
# Surveys
2019-05-15 01:47:56 +08:00
2018-06-04 22:45:20 +08:00
* Methods for Interpreting and Understanding Deep Neural Networks. _Montavon et al. 2017_ [pdf](https://arxiv.org/pdf/1706.07979.pdf)
* Visualizations of Deep Neural Networks in Computer Vision: A Survey. _Seifert et al. 2017_ [pdf](https://link.springer.com/chapter/10.1007/978-3-319-54024-5_6)
* How convolutional neural network see the world - A survey of convolutional neural network visualization methods. _Qin et al. 2018_ [pdf](https://arxiv.org/abs/1804.11191)
* A brief survey of visualization methods for deep learning models from the perspective of Explainable AI. _Chalkiadakis 2018_ [pdf](https://www.macs.hw.ac.uk/~ic14/IoannisChalkiadakis_RRR.pdf)
2018-09-21 05:59:51 +08:00
* A Survey Of Methods For Explaining Black Box Models. _Guidotti et al. 2018_ [pdf](https://arxiv.org/pdf/1802.01933.pdf)
2019-05-15 01:47:56 +08:00
* Understanding Neural Networks via Feature Visualization: A survey. _Nguyen et al. 2019_ [pdf](https://arxiv.org/pdf/1904.08939.pdf)
* Explaining Explanations: An Overview of Interpretability of Machine Learning. _Gilpin et al. 2019_ [pdf](https://arxiv.org/pdf/1806.00069.pdf)
2019-12-19 19:43:41 +08:00
* DARPA updates on the XAI program [pdf](https://www.darpa.mil/attachments/XAIProgramUpdate.pdf)
2020-06-08 06:41:45 +08:00
* Explainable Artificial Intelligence: a Systematic Review. _Vilone at al. 2020_ [pdf](https://arxiv.org/pdf/2006.00093.pdf)
2018-06-04 04:21:59 +08:00
2022-08-18 01:56:30 +08:00
### Opinions
2020-07-28 11:13:55 +08:00
* Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead _Rudin et al. Nature 2019_ [pdf](https://www.nature.com/articles/s42256-019-0048-x)
2021-06-24 04:29:27 +08:00
* Towards falsifiable interpretability research. _Leavitt & Morcos 2020_ [pdf](https://arxiv.org/abs/2010.12016 "Issues with the current evaluation of attribution maps, feature visualization methods and Best practices for robust, falsifiable interpretability research")
2022-04-22 21:44:31 +08:00
* Four principles of Explainable Artificial Intelligence. _Phillips et al. 2021 (NIST.gov)_ [pdf](https://nvlpubs.nist.gov/nistpubs/ir/2021/NIST.IR.8312.pdf "An AI must provide explanations for its outputs and explanations must be meaningful/understandable to users and accurate. And the AI must know what it does not know.")
2021-06-24 04:29:27 +08:00
2020-07-28 11:13:55 +08:00
2022-08-18 01:56:30 +08:00
### Open research questions
2021-04-28 21:58:10 +08:00
* Interpretable Machine Learning: Fundamental Principles and 10 Grand Challenges. _Rudin et al 2021_ [pdf](https://arxiv.org/pdf/2103.11251.pdf "A list of traditional and emerging problems/challenges in the area of XAI / interpretable ML")
2022-08-18 01:56:30 +08:00
### Definitions of Interpretability
2019-05-22 01:07:54 +08:00
* The Mythos of Model Interpretability. _Lipton 2016_ [pdf](https://arxiv.org/abs/1606.03490)
* Towards A Rigorous Science of Interpretable Machine Learning. _Doshi-Velez & Kim. 2017_ [pdf](https://arxiv.org/pdf/1702.08608.pdf)
* Interpretable machine learning: definitions, methods, and applications. _Murdoch et al. 2019_ [pdf](https://arxiv.org/pdf/1901.04592v1.pdf)
2022-08-18 01:56:30 +08:00
### Books
2019-03-29 02:45:32 +08:00
* A Guide for Making Black Box Models Explainable. _Molnar 2019_ [pdf](https://christophm.github.io/interpretable-ml-book/)
# A. Explaining model inner-workings
2019-02-21 02:58:35 +08:00
## A1. Visualizing Preferred Stimuli
2022-08-18 01:56:30 +08:00
### Synthesizing images / Activation Maximization
* `AM`: Visualizing higher-layer features of a deep network. _Erhan et al. 2009_ [pdf](https://www.researchgate.net/publication/265022827_Visualizing_Higher-Layer_Features_of_a_Deep_Network)
2019-08-01 05:24:09 +08:00
* Deep inside convolutional networks: Visualising image classification models and saliency maps. _Simonyan et al. 2013_ [pdf](https://arxiv.org/pdf/1312.6034.pdf)
2022-08-18 01:56:30 +08:00
* `DeepVis`: Understanding Neural Networks through Deep Visualization. _Yosinski et al. ICML workshop 2015_ [pdf](http://yosinski.com/media/papers/Yosinski__2015__ICML_DL__Understanding_Neural_Networks_Through_Deep_Visualization__.pdf) | [url](http://yosinski.com/deepvis)
* `MFV`: Multifaceted Feature Visualization: Uncovering the different types of features learned by each neuron in deep neural networks. _Nguyen et al. ICML workshop 2016_ [pdf](http://www.evolvingai.org/files/mfv_icml_workshop_16.pdf) | [code](https://github.com/Evolving-AI-Lab/mfv)
* `DGN-AM`: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. _Nguyen et al. NIPS 2016_ [pdf](anhnguyen.me/project/synthesizing) | [code](https://github.com/Evolving-AI-Lab/synthesizing)
* `PPGN`: Plug and Play Generative Networks. _Nguyen et al. CVPR 2017_ [pdf](anhnguyen.me/project/ppgn/) | [code](https://github.com/Evolving-AI-Lab/ppgn)
2018-06-04 12:33:40 +08:00
* Feature Visualization. _Olah et al. 2017_ [url](https://distill.pub/2017/feature-visualization)
2018-08-09 02:52:55 +08:00
* Diverse feature visualizations reveal invariances in early layers of deep neural networks. _Cadena et al. 2018_ [pdf](https://arxiv.org/pdf/1807.10589.pdf)
* Computer Vision with a Single (Robust) Classifier. _Santurkar et al. NeurIPS 2019_ [pdf](https://arxiv.org/abs/1906.09453) | [blog](http://gradsci.org/robust_apps) | [code](https://github.com/MadryLab/robustness_applications)
2022-08-18 12:46:30 +08:00
* `BigGAN-AM`: A cost-effective method for improving and re-purposing large, pre-trained GANs by fine-tuning their class-embeddings. _Li et al. ACCV 2020_ [pdf](https://arxiv.org/abs/1910.04760) | [code](https://github.com/anguyen8/biggan-am)
2017-12-22 02:34:13 +08:00
2022-08-18 01:56:30 +08:00
### Real images / Segmentation Masks
* Visualizing and Understanding Recurrent Networks. _Kaparthey et al. ICLR 2015_ [pdf](https://arxiv.org/abs/1506.02078)
* Object Detectors Emerge in Deep Scene CNNs. _Zhou et al. ICLR 2015_ [pdf](https://arxiv.org/abs/1412.6856)
* Understanding Deep Architectures by Interpretable Visual Summaries. _Godi et al. BMVC 2019_ [pdf](https://arxiv.org/pdf/1801.09103.pdf)
2019-02-21 02:58:35 +08:00
## A2. Inverting Neural Networks
### A2.1 Inverting Classifiers
* Understanding Deep Image Representations by Inverting Them. _Mahendran & Vedaldi. CVPR 2015_ [pdf](https://arxiv.org/abs/1412.0035)
* Inverting Visual Representations with Convolutional Networks. _Dosovitskiy & Brox. CVPR 2016_ [pdf](https://arxiv.org/abs/1506.02753)
* Neural network inversion beyond gradient descent. _Wong & Kolter. NIPS workshop 2017_ [pdf](http://opt-ml.org/papers/OPT2017_paper_38.pdf)
2022-08-18 12:49:46 +08:00
* Inverting Adversarially Robust Networks for Image Synthesis. _Rojas-Gomez et al. 2021_ [pdf](https://arxiv.org/abs/2106.06927) | [code](https://github.com/renanrojasg/adv_robust_autoencoder)
### A2.2 Inverting Generators
* Image Processing Using Multi-Code GAN Prior. _Gu et al. 2019_ [pdf](https://arxiv.org/abs/1912.07116)
2019-02-21 02:58:35 +08:00
## A3. Distilling DNNs into more interpretable models
* Interpreting CNNs via Decision Trees [pdf](https://arxiv.org/abs/1802.00121)
* Distilling a Neural Network Into a Soft Decision Tree [pdf](https://arxiv.org/abs/1711.09784)
* Distill-and-Compare: Auditing Black-Box Models Using Transparent Model Distillation. _Tan et al. 2018_ [pdf](https://arxiv.org/abs/1710.06169)
* Improving the Interpretability of Deep Neural Networks with Knowledge Distillation. _Liu et al. 2018_ [pdf](https://arxiv.org/pdf/1812.10924.pdf)
## A4. Quantitatively characterizing hidden features
2022-08-18 01:56:30 +08:00
* `TCAV`: Interpretability Beyond Feature Attribution: Quantitative Testing with Concept Activation Vectors. _Kim et al. 2018_ [pdf](https://arxiv.org/abs/1711.11279) | [code](https://github.com/tensorflow/tcav)
* `DTCAV`: Automating Interpretability: Discovering and Testing Visual Concepts Learned by Neural Networks. _Ghorbani et al. 2019_ [pdf](https://arxiv.org/abs/1902.03129)
* `SVCCA`: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability. _Raghu et al. 2017_ [pdf](https://arxiv.org/abs/1706.05806) | [code](https://github.com/google/svcca)
2019-02-21 02:58:35 +08:00
* A Peek Into the Hidden Layers of a Convolutional Neural Network Through a Factorization Lens. _Saini et al. 2018_ [pdf](https://arxiv.org/abs/1806.02012)
2022-08-18 01:56:30 +08:00
* `Network Dissection`: Quantifying Interpretability of Deep Visual Representations. _Bau et al. CVPR 2017_ [url](http://netdissect.csail.mit.edu/) | [pdf](http://netdissect.csail.mit.edu/final-network-dissection.pdf)
* `GAN Dissection`: Visualizing and Understanding Generative Adversarial Networks. _Bau et al. ICLR 2019_ [pdf](https://arxiv.org/abs/1811.10597)
* `Net2Vec`: Quantifying and Explaining how Concepts are Encoded by Filters in Deep Neural Networks. _Fong & Vedaldi CVPR 2018_ [pdf](https://arxiv.org/abs/1801.03454)
2021-08-18 02:15:24 +08:00
* Intriguing generalization and simplicity of adversarially trained neural networks. _Chen, Agarwal, Nguyen 2020_ [pdf](http://anhnguyen.me/project/generalization-simplicity-robust-networks/)
2020-11-09 13:29:59 +08:00
* Understanding the Role of Individual Units in a Deep Neural Network. _Bau et al. PNAS 2020_ [pdf](https://arxiv.org/abs/2009.05041)
2019-02-21 02:58:35 +08:00
## A5. Network surgery
* How Important Is a Neuron? _Dhamdhere et al._ 2018 [pdf](https://arxiv.org/pdf/1805.12233.pdf)
## A6. Sensitivity analysis
2022-08-18 01:56:30 +08:00
* `NLIZE`: A Perturbation-Driven Visual Interrogation Tool for Analyzing and Interpreting Natural Language Inference Models. _Liu et al. 2018_ [pdf](http://www.sci.utah.edu/~shusenl/publications/paper_entailVis.pdf)
2019-02-21 02:58:35 +08:00
2018-06-04 12:33:40 +08:00
# B. Explaining model decisions
2019-02-21 02:58:35 +08:00
2019-10-16 12:01:17 +08:00
## B1. Attribution maps
### B1.0 Surveys
* Feature Removal Is A Unifying Principle For Model Explanation Methods. _Covert et al. 2020_ [pdf](https://arxiv.org/pdf/2011.03623.pdf "A survey unifying 25 attribution methods that remove features to measure their importance to model decisions.")
2019-08-01 05:08:39 +08:00
### B1.1 White-box / Gradient-based
2019-05-15 21:52:06 +08:00
2018-06-04 04:25:57 +08:00
* A Taxonomy and Library for Visualizing Learned Features in Convolutional Neural Networks [pdf](https://arxiv.org/pdf/1606.07757.pdf)
2019-08-01 05:08:39 +08:00
2019-08-01 05:19:56 +08:00
#### Gradient
2022-08-18 01:56:30 +08:00
* `Gradient`: Deep inside convolutional networks: Visualising image classification models and saliency maps. _Simonyan et al. 2013_ [pdf](https://arxiv.org/pdf/1312.6034.pdf)
* `Deconvnet`: Visualizing and understanding convolutional networks. _Zeiler et al. 2014_ [pdf](https://arxiv.org/pdf/1311.2901.pdf)
* `Guided-backprop`: Striving for simplicity: The all convolutional net. _Springenberg et al. 2015_ [pdf](http://arxiv.org/pdf/1412.6806.pdf)
* `SmoothGrad`: removing noise by adding noise. _Smilkov et al. 2017_ [pdf](https://arxiv.org/abs/1706.03825)
2019-08-01 05:19:56 +08:00
#### Input x Gradient
2022-08-18 01:56:30 +08:00
* `DeepLIFT`: Learning important features through propagating activation differences. _Shrikumar et al. 2017_ [pdf](https://arxiv.org/pdf/1605.01713.pdf)
* `IG`: Axiomatic Attribution for Deep Networks. _Sundararajan et al. 2018_ [pdf](http://proceedings.mlr.press/v70/sundararajan17a/sundararajan17a.pdf) | [code](https://github.com/ankurtaly/Integrated-Gradients)
* `EG`: Learning Explainable Models Using Attribution Priors. _Erion et al. 2019_ [pdf](https://arxiv.org/abs/1906.10670) | [code](https://github.com/suinleelab/attributionpriors)
* `I-GOR`: Visualizing Deep Networks by Optimizing with Integrated Gradients. _Qi et al. 2019_ [pdf](https://arxiv.org/pdf/1905.00954.pdf)
* `BlurIG`: Attribution in Scale and Space. _Xu et al. CVPR 2020_ [pdf](https://openaccess.thecvf.com/content_CVPR_2020/papers/Xu_Attribution_in_Scale_and_Space_CVPR_2020_paper.pdf) | [code](https://github.com/PAIR-code/saliency)
* `XRAI`: Better Attributions Through Regions. _Kapishnikov et al. ICCV 2019_ [pdf](https://arxiv.org/abs/1906.02825) | [code](https://github.com/PAIR-code/saliency)
* `LRP`: Beyond saliency: understanding convolutional neural networks from saliency prediction on layer-wise relevance propagation [pdf](https://arxiv.org/abs/1712.08268)
* `DTD`: Explaining NonLinear Classification Decisions With Deep Tayor Decomposition [pdf](https://arxiv.org/abs/1512.02479)
2019-08-01 05:19:56 +08:00
2019-08-01 05:08:39 +08:00
#### Activation map
2022-08-18 01:56:30 +08:00
* `CAM`: Learning Deep Features for Discriminative Localization. _Zhou et al. 2016_ [code](https://github.com/metalbubble/CAM) | [web](http://cnnlocalization.csail.mit.edu/)
* `Grad-CAM`: Visual Explanations from Deep Networks via Gradient-based Localization. _Selvaraju et al. 2017_ [pdf](https://arxiv.org/abs/1610.02391)
* `Grad-CAM++`: Improved Visual Explanations for Deep Convolutional Networks. _Chattopadhyay et al. 2017_ [pdf](https://arxiv.org/abs/1710.11063) | [code](https://github.com/adityac94/Grad_CAM_plus_plus)
* `Smooth Grad-CAM++`: An Enhanced Inference Level Visualization Technique for Deep Convolutional Neural Network Models. _Omeiza et al. 2019_ [pdf](https://arxiv.org/pdf/1908.01224.pdf)
* `NormGrad`: There and Back Again: Revisiting Backpropagation Saliency Methods. _Rebuffi et al. CVPR 2020_ [pdf](https://arxiv.org/abs/2004.02866) | [code](https://github.com/srebuffi/revisiting_saliency)
* `Score-CAM`: Score-Weighted Visual Explanations for Convolutional Neural Networks. _Wang et al. CVPR 2020 workshop_ [pdf](https://openaccess.thecvf.com/content_CVPRW_2020/papers/w1/Wang_Score-CAM_Score-Weighted_Visual_Explanations_for_Convolutional_Neural_Networks_CVPRW_2020_paper.pdf "Use activation maps to mask out the input image and generate masked inputs; Use the difference between the original score and score on masked inputs to weight the activation maps and linearly combine them into a Score-CAM heatmap.") | [code](https://github.com/haofanwang/Score-CAM)
2022-08-18 12:18:20 +08:00
* `Relevance-CAM`: Your Model Already Knows Where to Look. _Lee et al. CVPR 2021_ [pdf](https://openaccess.thecvf.com/content/CVPR2021/papers/Lee_Relevance-CAM_Your_Model_Already_Knows_Where_To_Look_CVPR_2021_paper.pdf "Relevance-CAM uses the LRP relevance score for each channel as the weight for linearly combining channels into a CAM heatmap.") | [code](https://github.com/mongeoroo/Relevance-CAM)
2021-08-18 02:12:40 +08:00
2022-08-18 12:28:17 +08:00
* `LIFT-CAM`: Towards Better Explanations of Class Activation Mapping. _Jung & Oh ICCV 2021_ [pdf](https://openaccess.thecvf.com/content/ICCV2021/papers/Jung_Towards_Better_Explanations_of_Class_Activation_Mapping_ICCV_2021_paper.pdf "Like Relevance-CAM, LIFT-CAM propose to use a DeepLIFT score, which estimates the Shapley contribution value, for each layer as the weight for linearly combining channels into a CAM heatmap.")
2019-08-01 05:08:39 +08:00
#### Learning the heatmap
2022-08-18 01:56:30 +08:00
* `MP`: Interpretable Explanations of Black Boxes by Meaningful Perturbation. _Fong et al. 2017_ [pdf](http://openaccess.thecvf.com/content_ICCV_2017/papers/Fong_Interpretable_Explanations_of_ICCV_2017_paper.pdf)
* `MP-G`: Removing input features via a generative model to explain their attributions to classifier's decisions. _Agarwal & Nguyen ACCV 2020_ [pdf](https://arxiv.org/abs/1910.04256) | [code](https://github.com/anguyen8/generative-attribution-methods)
* `EP`: Understanding Deep Networks via Extremal Perturbations and Smooth Masks. _Fong et al. ICCV 2019_ [pdf](https://arxiv.org/abs/1910.08485) | [code](https://github.com/ruthcfong/TorchRay/tree/normgrad)
* `FIDO`: Explaining image classifiers by counterfactual generation. _Chang et al. ICLR 2019_ [pdf](https://arxiv.org/pdf/1807.08024.pdf)
* `FG-Vis`: Interpretable and Fine-Grained Visual Explanations for Convolutional Neural Networks. _Wagner et al. CVPR 2019_ [pdf](http://openaccess.thecvf.com/content_CVPR_2019/papers/Wagner_Interpretable_and_Fine-Grained_Visual_Explanations_for_Convolutional_Neural_Networks_CVPR_2019_paper.pdf)
* `CEM`: Explanations based on the Missing: Towards Contrastive Explanations with Pertinent Negatives. _Dhurandhar & Chen et al. NeurIPS 2018_ [pdf](https://proceedings.neurips.cc/paper/2018/file/c5ff2543b53f4cc0ad3819a36752467b-Paper.pdf "Learn a pixel-wise heatmap that highlights the missing feature in the input image in order for the input to be classified into a target class e.g., informing users that a top, horizontal stroke is missing for a digit to be a five.") | [code](https://github.com/IBM/Contrastive-Explanation-Method)
2019-10-16 12:01:17 +08:00
#### Attributions of network biases
2022-08-18 01:56:30 +08:00
* `FullGrad`: Full-Gradient Representation for Neural Network Visualization. _Srinivas et al. NeurIPS 2019_ [pdf](https://arxiv.org/pdf/1905.00780.pdf)
* Bias also matters: Bias attribution for deep neural network explanation. _Wang et al. ICML 2019_ [pdf](http://proceedings.mlr.press/v97/wang19p/wang19p.pdf)
2019-08-01 05:08:39 +08:00
#### Others
2019-03-31 05:25:05 +08:00
* Visual explanation by interpretation: Improving visual feedback capabilities of deep neural networks. _Oramas et al. 2019_ [pdf](https://arxiv.org/pdf/1712.06302.pdf)
2019-08-01 05:08:39 +08:00
* Regional Multi-scale Approach for Visually Pleasing Explanations of Deep Neural Networks. _Seo et al. 2018_ [pdf](https://arxiv.org/pdf/1807.11720.pdf)b
2018-01-13 05:59:18 +08:00
### B1.2 Attention as Explanation
#### Computer Vision
* Multimodal explanations: Justifying decisions and pointing to the evidence. _Park et al. CVPR 2018_ [pdf](https://arxiv.org/abs/1802.08129)
2022-08-18 01:56:30 +08:00
* `IA-RED2`: Interpretability-Aware Redundancy Reduction for Vision Transformers. _Pan et al. NeurIPS 2021_ [pdf](https://arxiv.org/abs/2106.12620 "Sparsify attention maps of Vision Transformers to reduce inference speed and improve interpretability.")
* Transformer Interpretability Beyond Attention Visualization. _Hila et al. CVPR 2021_ [pdf](https://arxiv.org/abs/2012.09838 "Create an attribution map for Vision Transformers by Gradient x Attention and using rollout to aggregate multiple attention layers") | [code](https://github.com/hila-chefer/Transformer-Explainability)
* Generic Attention-model Explainability for Interpreting Bi-Modal and Encoder-Decoder Transformers. _Hila et al. ECCV 2021_ [pdf](https://arxiv.org/abs/2103.15679) | [code](https://github.com/hila-chefer/Transformer-MM-Explainability)
#### NLP
* Attention is not Explanation. _Jain & Wallace. NAACL 2019_ [pdf](https://www.aclweb.org/anthology/N19-1357.pdf)
* Attention is not not Explanation. _Wiegreffe & Pinter. EMNLP 2019_ [pdf](https://www.aclweb.org/anthology/D19-1002.pdf)
* Learning to Deceive with Attention-Based Explanations. _Pruthi et al. ACL 2020_ [pdf](https://arxiv.org/pdf/1909.07913.pdf)
### B1.3 Black-box / Perturbation-based
2022-08-18 01:56:30 +08:00
* `Sliding-Patch`: Visualizing and understanding convolutional networks. _Zeiler et al. 2014_ [pdf](https://arxiv.org/pdf/1311.2901.pdf)
* `PDA`: Visualizing deep neural network decisions: Prediction difference analysis. _Zintgraf et al. ICLR 2017_ [pdf](https://arxiv.org/pdf/1702.04595.pdf)
* `RISE`: Randomized Input Sampling for Explanation of Black-box Models. _Petsiuk et al. BMVC 2018_ [pdf](https://arxiv.org/pdf/1806.07421.pdf)
* `LIME`: Why should i trust you?: Explaining the predictions of any classifier. _Ribeiro et al. 2016_ [pdf](https://arxiv.org/pdf/1602.04938.pdf) | [blog](https://homes.cs.washington.edu/~marcotcr/blog/lime/)
* `LIME-G`: Removing input features via a generative model to explain their attributions to classifier's decisions. _Agarwal & Nguyen. ACCV 2020_ [pdf](https://arxiv.org/abs/1910.04256) | [code](https://github.com/anguyen8/generative-attribution-methods)
* `SHAP`: A Unified Approach to Interpreting Model Predictions. _Lundberg et al. 2017_ [pdf](https://papers.nips.cc/paper/7062-a-unified-approach-to-interpreting-model-predictions.pdf) | [code](https://github.com/slundberg/shap)
* `OSFT`: Interpreting Black Box Models via Hypothesis Testing. _Burns et al. 2019_ [pdf](https://arxiv.org/pdf/1904.00045.pdf)
* `IM`: Interpretation of NLP models through input marginalization. _Kim et al. EMNLP 2020_ [pdf](https://arxiv.org/abs/2010.13984 "Use BERT to replace a given token in the input text and compute its attribution as the prediction-difference marginalized over all BERT-generated samples")
2021-08-27 05:42:46 +08:00
* Considering Likelihood in NLP Classification Explanations with Occlusion and Language Modeling. _Harbecke et al. 2020_ [pdf](https://arxiv.org/abs/2004.09890 "Same idea as Kim et al. EMNLP 2020 above. Additionally, they found the Kim et al. 2020 method to not exactly correlate with the traditional Deletion/Leave-One-Out method")
2018-06-26 12:11:16 +08:00
### B1.4 Evaluating heatmaps
2020-06-13 13:56:36 +08:00
2022-08-18 01:56:30 +08:00
#### Metrics
* `Deletion` & `Insertion`: Randomized Input Sampling for Explanation of Black-box Models. _Petsiuk et al. BMVC 2018_ [pdf](https://arxiv.org/pdf/1806.07421.pdf)
* `ROAD`: A Consistent and Efficient Evaluation Strategy for Attribution Methods. _Rong & Leemann, et al. ICML 2022_ [pdf](https://proceedings.mlr.press/v162/rong22a.html "Deletion metric i.e. MoRF / LeRF but where a to-be-deleted pixel is not grayed out but replaced by an average over the neighborhood pixel. Similar to DeletionBERT in NLP.") | [code](https://github.com/tleemann/road_evaluation)
* `ROAR`: A Benchmark for Interpretability Methods in Deep Neural Networks. _Hooker et al. NeurIPS 2019_ [pdf](https://arxiv.org/abs/1806.10758) | [code](https://github.com/google-research/google-research/tree/master/interpretability_benchmark)
* DiffROAR: Do Input Gradients Highlight Discriminative Features? _Shah et al. NeurIPS 2021_ [pdf](https://arxiv.org/pdf/2102.12781.pdf "DiffROAR = ROAR(highest_attribution_pixels) - ROAR (lowest_attribution_pixels), which is expected to be zero for random attribution methods and highly positive for good attribution methods") | [code](https://github.com/harshays/inputgradients)
* `Sanity Checks` for Saliency Maps. _Adebayo et al. 2018_ [pdf](http://papers.nips.cc/paper/8160-sanity-checks-for-saliency-maps.pdf)
* `BIM`: Towards Quantitative Evaluation of Attribution Methods with Ground Truth. _Yang et al. 2019_ [pdf](https://arxiv.org/abs/1907.09701)
* `SAM`: The Sensitivity of Attribution Methods to Hyperparameters. _Bansal, Agarwal, Nguyen. CVPR 2020_ [pdf](http://anhnguyen.me/project/sam/) | [code](https://github.com/anguyen8/sam)
#### Human-study evaluation
* The effectiveness of feature attribution methods and its correlation with automatic evaluation scores. _Nguyen, Kim, Nguyen 2021_ [pdf](http://anhnguyen.me/project/feature-attribution-effectiveness/ "On image classification, feature attribution maps are less effective in improving human-AI team compared to a simple nearest-neighbor method. The effectiveness of heatmaps also does not correlate with their localization performance.")
* Debugging Tests for Model Explanations. _Adebayo et al. NeurIPS 2020_ [pdf](https://proceedings.neurips.cc/paper/2020/file/075b051ec3d22dac7b33f788da631fd4-Paper.pdf "Testing an extensive list of attribution methods and humans when data contain spurious, correlated features, and on out-of-samples")
2020-06-13 13:56:36 +08:00
#### Computer Vision
2019-05-15 21:52:06 +08:00
* The (Un)reliability of saliency methods. _Kindermans et al. 2018_ [pdf](https://openreview.net/forum?id=r1Oen--RW)
2019-08-01 05:08:39 +08:00
* A Theoretical Explanation for Perplexing Behaviors of Backpropagation-based Visualizations. _Nie et al. 2018_ [pdf](https://arxiv.org/abs/1805.07039)
2019-08-02 00:39:18 +08:00
* On the (In)fidelity and Sensitivity for Explanations. _Yeh et al. 2019_ [pdf](https://arxiv.org/pdf/1901.09392.pdf)
2022-08-18 01:56:30 +08:00
2020-06-13 13:56:36 +08:00
#### NLP
2022-08-18 01:56:30 +08:00
* `Deletion_BERT`: Double Trouble: How to not explain a text classifiers decisions using counterfactuals synthesized by masked language models. _Pham et al. 2022_ [pdf](https://arxiv.org/abs/2110.11929 "A masked-language model (e.g. BERT) can be used in both a prediction-difference-based attribution method AND also a Deletion/Insert-based attribution evaluation method. Yet, the use of MLM produces a strong bias that can produce misleading/biased evaluation results.") | [code](https://github.com/anguyen8/im)
2020-06-13 13:56:36 +08:00
* Evaluating Explainable AI: Which Algorithmic Explanations Help Users Predict Model Behavior? _Hase & Bansal ACL 2020_ [pdf](https://arxiv.org/pdf/2005.01831.pdf) | [code](https://github.com/peterbhase/InterpretableNLP-ACL2020)
2021-04-28 00:58:09 +08:00
* Teach Me to Explain: A Review of Datasets for Explainable NLP. _Wiegreffe & Marasović 2021_ [pdf](https://arxiv.org/abs/2102.12060 "A survey of datasets with groundtruth heatmaps/input-highlights, free-text explanations, and structured explanations") | [web](https://exnlpdatasets.github.io/)
2020-06-13 13:56:36 +08:00
2021-06-18 01:04:14 +08:00
#### Tabular data
* Challenging common interpretability assumptions in feature attribution explanations? _Dinu et al. NeurIPS workshop 2020_ [pdf](https://arxiv.org/abs/2012.02748 "Feature attribution explanations provide marginal utility for a human decision-maker in house-price prediction, and in some cases result in worse decisions due to cognitive and contextual confounders. More human evaluation in XAI research needed.")
2021-08-25 12:24:44 +08:00
#### Many domains
* How Can I Explain This to You? An Empirical Study of Deep Neural Network Explanation Methods. _Jeyakumar et al. NeurIPS 2020_ [pdf](https://proceedings.neurips.cc/paper/2020/file/2c29d89cc56cdb191c60db2f0bae796b-Paper.pdf "A human study to identify which explanation method is preferred by humans on CIFAR-10, sentiment analysis, keyword detection, heartbeat classification from ECG. Explanation-by-example was preferred in all domains except text sentiment classification, where LIMEs method of annotating input text was preferred.") | [code](https://github.com/nesl/Explainability-Study)
### B1.5 Explaining image-image similarity
2022-08-18 01:56:30 +08:00
* `BiLRP`: Building and Interpreting Deep Similarity Models. _Jie Zhou et al. TPAMI 2020_ [pdf](https://arxiv.org/abs/2003.05431 "LRP applied to image matching models")
* `SANE`: Why do These Match? Explaining the Behavior of Image Similarity Models. _Plummer et al. ECCV 2020_ [pdf](https://arxiv.org/abs/1905.10797 "Matching saliency maps to discrete attributes for specific applications for clothes recommendation")
2021-07-28 11:49:53 +08:00
* Visualizing Deep Similarity Networks. _Stylianou et al. WACV 2019_ [pdf](https://arxiv.org/abs/1901.00536 "Factoring the dot product of two Siamese branches into two heatmaps, each for a branch.") | [code](https://github.com/GWUvision/Similarity-Visualization)
2021-08-18 02:05:44 +08:00
* Visual Explanation for Deep Metric Learning. _Zhu et al. 2019_ [pdf](https://arxiv.org/abs/1909.12977 "Taking dot product between a patch in image A with every patch in image B to compute a weakly-supervised correspondence map") | [code](https://github.com/Jeff-Zilence/Explain_Metric_Learning)
#### Face verification
2022-08-18 01:56:30 +08:00
* `DISE`: Explainable Face Recognition. _Williford et al. ECCV 2020_ [pdf](https://arxiv.org/abs/2008.00916 "Extension of RISE in face-matching. Mask out a small region in the query image to compute its attribution to the image-matching triplet loss") | [code](https://github.com/stresearch/xfr)
* `xCos`: An explainable cosine metric for face verification task. _Lin et al. 2021_ [pdf](https://arxiv.org/abs/2003.05383) | [code](https://github.com/ntubiolin/xcos)
* `DeepFace-EMD`: Re-ranking Using Patch-wise Earth Movers Distance Improves Out-Of-Distribution Face Identification. _Phan & Nguyen. CVPR 2022_ ([pdf](https://arxiv.org/abs/2112.04016 "Visualize the EMD flow map between two images to show how an a face identification system matches two faces.") | [code](https://github.com/anguyen8/deepface-emd))
2019-05-15 21:52:06 +08:00
2019-02-21 02:58:35 +08:00
## B2. Learning to explain
### B2.1 Regularizing attribution maps
* Right for the Right Reasons: Training Differentiable Models by Constraining their Explanations. _Ross et al. IJCAI 2017_ [pdf](https://www.ijcai.org/Proceedings/2017/0371.pdf)
* Learning Explainable Models Using Attribution Priors. _Erion et al. 2019_ [pdf](https://arxiv.org/abs/1906.10670)
* Interpretations are useful: penalizing explanations to align neural networks with prior knowledge. _Rieger et al. 2019_ [pdf](https://arxiv.org/pdf/1909.13584.pdf)
### B2.2 Training deep nets to approximate expensive, posthoc attribution methods
2022-08-18 01:56:30 +08:00
* `L2E`: Learning to Explain: Generating Stable Explanations Fast. _Situ et al. ACL 2021_ [pdf](https://aclanthology.org/2021.acl-long.415.pdf "Training neural networks to mimic a black-box attribution methods e.g. Occlusion, LIME, SHAP produces a faster and more stable explanation method.") | [code](https://github.com/situsnow/L2E)
* Efficient Explanations from Empirical Explainers. _Schwarzenberg et al. 2021_ [pdf](https://arxiv.org/abs/2103.15429 "Training deep nets to approximate Integrated Gradient and Shapley methods")
### B2.3 Explaining by prototypes
2022-08-18 01:56:30 +08:00
* `ProtoPNet` This Looks Like That: Deep Learning for Interpretable Image Recognition. _Chen et al. NeurIPS 2019_ [pdf](https://arxiv.org/abs/1806.10574) | [code](https://github.com/cfchen-duke/ProtoPNet)
* This Looks Like That, Because ... Explaining Prototypes for Interpretable Image Recognition. _Nauta et al. 2020_ [pdf](https://arxiv.org/pdf/2011.02863.pdf) | [code](https://github.com/M-Nauta/Explaining_Prototypes)
* `NP-ProtoPNet`: These do not Look Like Those. _Singh et al. 2021_ [pdf](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=9373404 "ProtoPNet with negative prototypes and applied to chest x-rays")
* `ProtoTree` Neural Prototype Trees for Interpretable Fine-grained Image Recognition. _Nauta et al. CVPR 2021_ [pdf](https://arxiv.org/abs/2012.02046) | [code](https://github.com/M-Nauta/ProtoTree)
2020-11-09 13:29:59 +08:00
### B2.4 Explaining by retrieving supporting examples
2022-08-18 01:56:30 +08:00
* `EMD-Corr` & `CHM-Corr`: Visual correspondence-based explanations improve AI robustness and human-AI team accuracy. _Nguyen, Taesiri, Nguyen 2022._ [pdf](https://arxiv.org/abs/2208.00780 "An interpretable-by-design XAI method that first retrieves similar patches (like kNN) to the input image from a training set or knowledgebase and then use them as evidence to label the input image. EMD-Corr and CHM-Corr improves OOD accuracy on ImageNet and improve human accuracy on CUB.") | [code](https://github.com/anguyen8/visual-correspondence-XAI)
### B2.5 Adversarial attacks on XAI systems with humans in the loop
2021-07-07 20:29:45 +08:00
* When and How to Fool Explainable Models (and Humans) with Adversarial Examples. _Vadilo et al. 2021_ [pdf](https://arxiv.org/abs/2107.01943 "A framework of scenarios, assumptions, and humans in an XAI system under adversarial attacks")
* The effectiveness of feature attribution methods and its correlation with automatic evaluation scores. _Nguyen, Kim, Nguyen 2021_ [pdf](http://anhnguyen.me/project/feature-attribution-effectiveness/ "On image classification, feature attribution maps are less effective in improving human-AI team compared to a simple nearest-neighbor method. The effectiveness of heatmaps also does not correlate with their localization performance.")
### B2.6 Others
2019-02-13 03:11:47 +08:00
* Learning how to explain neural networks: PatternNet and PatternAttribution [pdf](https://arxiv.org/abs/1705.05598)
2018-04-20 02:44:04 +08:00
* Deep Learning for Case-Based Reasoning through Prototypes [pdf](https://arxiv.org/pdf/1710.04806.pdf)
2018-06-03 04:27:13 +08:00
* Unsupervised Learning of Neural Networks to Explain Neural Networks [pdf](https://arxiv.org/abs/1805.07468)
2019-01-20 04:15:57 +08:00
* Automated Rationale Generation: A Technique for Explainable AI and its Effects on Human Perceptions [pdf](https://arxiv.org/abs/1901.03729)
2019-02-21 02:58:35 +08:00
* Rationalization: A Neural Machine Translation Approach to Generating Natural Language Explanations [pdf](https://arxiv.org/pdf/1702.07826.pdf)
2019-03-29 02:45:32 +08:00
* Towards robust interpretability with self-explaining neural networks. _Alvarez-Melis and Jaakola 2018_ [pdf](http://people.csail.mit.edu/tommi/papers/SENN_paper.pdf)
2019-01-20 04:15:57 +08:00
2019-08-11 12:52:37 +08:00
# C. Counterfactual explanations
* Counterfactual Explanations for Machine Learning: A Review. _Verma et al. 2020_ [pdf](https://arxiv.org/pdf/2010.10596.pdf)
2019-03-29 02:45:32 +08:00
* Interpreting Neural Network Judgments via Minimal, Stable, and Symbolic Corrections. _Zhang et al. 2018_ [pdf](http://papers.nips.cc/paper/7736-interpreting-neural-network-judgments-via-minimal-stable-and-symbolic-corrections.pdf)
2019-08-11 12:52:37 +08:00
* Counterfactual Visual Explanations. _Goyal et al. 2019_ [pdf](https://arxiv.org/pdf/1904.07451.pdf)
2019-10-17 00:38:03 +08:00
* Generative Counterfactual Introspection for Explainable Deep Learning. _Liu et al. 2019_ [pdf](https://arxiv.org/abs/1907.03077)
2018-06-26 11:55:15 +08:00
2020-06-30 03:39:50 +08:00
### Generative models
* Generative causal explanations of black-box classifiers. _OShaughnessy et al. 2020_ [pdf](https://arxiv.org/abs/2006.13913)
* Removing input features via a generative model to explain their attributions to classifier's decisions. _Agarwal et al. 2019_ [pdf](https://arxiv.org/abs/1910.04256) | [code](https://github.com/anguyen8/generative-attribution-methods)
# D. Explainable AI in the real world
2022-11-15 21:55:57 +08:00
### Medical domains
* A systematic review on the use of explainability in deep learning systems for computer aided diagnosis in radiology: Limited use of explainable AI?. _Groen et al. European Journal of Radiology 2022_ [pdf](https://www.sciencedirect.com/science/article/pii/S0720048X22004429 "XAI is used in 37% of diagnostic test studies for radiology that use end-to-end deep learning. Most studies use Class Activation Mapping.")
2022-11-15 21:55:57 +08:00
* “Help Me Help the AI”: Understanding How Explainability Can Support Human-AI Interaction. _Kim et al. 2022_ [pdf](https://arxiv.org/abs/2210.03735 "Practical recommendations and feedback for human-AI explanation designs from interviews with 20 end-users of Merlin, a bird-identification app.)
2020-06-30 03:39:50 +08:00
# E. Others
2019-02-21 02:58:35 +08:00
* Yang, S. C. H., & Shafto, P. Explainable Artificial Intelligence via Bayesian Teaching. NIPS 2017 [pdf](http://shaftolab.com/assets/papers/yangShafto_NIPS_2017_machine_teaching.pdf)
2018-06-26 11:55:15 +08:00
* Explainable AI for Designers: A Human-Centered Perspective on Mixed-Initiative Co-Creation [pdf](http://www.antoniosliapis.com/papers/explainable_ai_for_designers.pdf)
2018-08-04 04:06:50 +08:00
* ICADx: Interpretable computer aided diagnosis of breast masses. _Kim et al. 2018_ [pdf](https://arxiv.org/abs/1805.08960)
2019-01-25 22:37:54 +08:00
* Neural Network Interpretation via Fine Grained Textual Summarization. _Guo et al. 2018_ [pdf](https://arxiv.org/pdf/1805.08969.pdf)
2019-02-13 22:40:23 +08:00
* LS-Tree: Model Interpretation When the Data Are Linguistic. _Chen et al. 2019_ [pdf](https://arxiv.org/abs/1902.04187)
2019-02-21 02:58:35 +08:00