pytorch-dnc/tasks/adding_task.py

268 lines
9.1 KiB
Python

#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import getopt
import sys
import os
import math
import time
import argparse
from visdom import Visdom
sys.path.insert(0, os.path.join('..', '..'))
import torch as T
from torch.autograd import Variable as var
import torch.nn.functional as F
import torch.optim as optim
from torch.nn.utils import clip_grad_norm
from dnc.dnc import DNC
from dnc.sdnc import SDNC
from dnc.sam import SAM
from dnc.util import *
parser = argparse.ArgumentParser(description='PyTorch Differentiable Neural Computer')
parser.add_argument('-input_size', type=int, default=6, help='dimension of input feature')
parser.add_argument('-rnn_type', type=str, default='lstm', help='type of recurrent cells to use for the controller')
parser.add_argument('-nhid', type=int, default=64, help='number of hidden units of the inner nn')
parser.add_argument('-dropout', type=float, default=0, help='controller dropout')
parser.add_argument('-memory_type', type=str, default='dnc', help='dense or sparse memory: dnc | sdnc | sam')
parser.add_argument('-nlayer', type=int, default=1, help='number of layers')
parser.add_argument('-nhlayer', type=int, default=2, help='number of hidden layers')
parser.add_argument('-lr', type=float, default=1e-4, help='initial learning rate')
parser.add_argument('-optim', type=str, default='adam', help='learning rule, supports adam|rmsprop')
parser.add_argument('-clip', type=float, default=50, help='gradient clipping')
parser.add_argument('-batch_size', type=int, default=100, metavar='N', help='batch size')
parser.add_argument('-mem_size', type=int, default=20, help='memory dimension')
parser.add_argument('-mem_slot', type=int, default=16, help='number of memory slots')
parser.add_argument('-read_heads', type=int, default=4, help='number of read heads')
parser.add_argument('-sparse_reads', type=int, default=10, help='number of sparse reads per read head')
parser.add_argument('-temporal_reads', type=int, default=2, help='number of temporal reads')
parser.add_argument('-sequence_max_length', type=int, default=1000, metavar='N', help='sequence_max_length')
parser.add_argument('-cuda', type=int, default=-1, help='Cuda GPU ID, -1 for CPU')
parser.add_argument('-iterations', type=int, default=2000, metavar='N', help='total number of iteration')
parser.add_argument('-summarize_freq', type=int, default=100, metavar='N', help='summarize frequency')
parser.add_argument('-check_freq', type=int, default=100, metavar='N', help='check point frequency')
parser.add_argument('-visdom', action='store_true', help='plot memory content on visdom per -summarize_freq steps')
args = parser.parse_args()
print(args)
viz = Visdom()
# assert viz.check_connection()
if args.cuda != -1:
print('Using CUDA.')
T.manual_seed(1111)
else:
print('Using CPU.')
def llprint(message):
sys.stdout.write(message)
sys.stdout.flush()
def onehot(x, n):
ret = np.zeros(n).astype(np.float32)
ret[x] = 1.0
return ret
def generate_data(length, size):
content = np.random.randint(0, size - 1, length)
seqlen = length + 1
x_seq_list = [float('nan')] * seqlen
sums = 0.0
sums_text = ""
for i in range(seqlen):
if (i < length):
x_seq_list[i] = onehot(content[i], size)
sums += content[i]
sums_text += str(content[i]) + " + "
else:
x_seq_list[i] = onehot(size - 1, size)
x_seq_list = np.array(x_seq_list)
x_seq_list = x_seq_list.reshape((1,) + x_seq_list.shape)
sums = np.array(sums)
sums = sums.reshape(1, 1, 1)
return cudavec(x_seq_list, gpu_id=args.cuda).float(), cudavec(sums, gpu_id=args.cuda).float(), sums_text
def cross_entropy(prediction, target):
return (prediction - target) ** 2
if __name__ == '__main__':
dirname = os.path.dirname(__file__)
ckpts_dir = os.path.join(dirname, 'checkpoints')
input_size = args.input_size
memory_type = args.memory_type
lr = args.lr
clip = args.clip
batch_size = args.batch_size
sequence_max_length = args.sequence_max_length
cuda = args.cuda
iterations = args.iterations
summarize_freq = args.summarize_freq
check_freq = args.check_freq
visdom = args.visdom
from_checkpoint = None
if args.memory_type == 'dnc':
rnn = DNC(
input_size=args.input_size,
hidden_size=args.nhid,
rnn_type=args.rnn_type,
num_layers=args.nlayer,
num_hidden_layers=args.nhlayer,
dropout=args.dropout,
nr_cells=args.mem_slot,
cell_size=args.mem_size,
read_heads=args.read_heads,
gpu_id=args.cuda,
debug=args.visdom,
batch_first=True,
independent_linears=True
)
elif args.memory_type == 'sdnc':
rnn = SDNC(
input_size=args.input_size,
hidden_size=args.nhid,
rnn_type=args.rnn_type,
num_layers=args.nlayer,
num_hidden_layers=args.nhlayer,
dropout=args.dropout,
nr_cells=args.mem_slot,
cell_size=args.mem_size,
sparse_reads=args.sparse_reads,
temporal_reads=args.temporal_reads,
read_heads=args.read_heads,
gpu_id=args.cuda,
debug=args.visdom,
batch_first=True,
independent_linears=False
)
elif args.memory_type == 'sam':
rnn = SAM(
input_size=args.input_size,
hidden_size=args.nhid,
rnn_type=args.rnn_type,
num_layers=args.nlayer,
num_hidden_layers=args.nhlayer,
dropout=args.dropout,
nr_cells=args.mem_slot,
cell_size=args.mem_size,
sparse_reads=args.sparse_reads,
read_heads=args.read_heads,
gpu_id=args.cuda,
debug=args.visdom,
batch_first=True,
independent_linears=False
)
else:
raise Exception('Not recognized type of memory')
if args.cuda != -1:
rnn = rnn.cuda(args.cuda)
print(rnn)
last_save_losses = []
if args.optim == 'adam':
optimizer = optim.Adam(rnn.parameters(), lr=args.lr, eps=1e-9, betas=[0.9, 0.98]) # 0.0001
elif args.optim == 'adamax':
optimizer = optim.Adamax(rnn.parameters(), lr=args.lr, eps=1e-9, betas=[0.9, 0.98]) # 0.0001
elif args.optim == 'rmsprop':
optimizer = optim.RMSprop(rnn.parameters(), lr=args.lr, momentum=0.9, eps=1e-10) # 0.0001
elif args.optim == 'sgd':
optimizer = optim.SGD(rnn.parameters(), lr=args.lr) # 0.01
elif args.optim == 'adagrad':
optimizer = optim.Adagrad(rnn.parameters(), lr=args.lr)
elif args.optim == 'adadelta':
optimizer = optim.Adadelta(rnn.parameters(), lr=args.lr)
last_100_losses = []
(chx, mhx, rv) = (None, None, None)
for epoch in range(iterations + 1):
llprint("\rIteration {ep}/{tot}".format(ep=epoch, tot=iterations))
optimizer.zero_grad()
# We use for training just (sequence_max_length / 10) examples
random_length = np.random.randint(2, (sequence_max_length) + 1)
input_data, target_output, sums_text = generate_data(random_length, input_size)
if rnn.debug:
output, (chx, mhx, rv), v = rnn(input_data, (None, mhx, None), reset_experience=True, pass_through_memory=True)
else:
output, (chx, mhx, rv) = rnn(input_data, (None, mhx, None), reset_experience=True, pass_through_memory=True)
output = output.sum(dim=2, keepdim=True).sum(dim=1, keepdim=True)
loss = cross_entropy(output, target_output)
loss.backward()
T.nn.utils.clip_grad_norm(rnn.parameters(), args.clip)
optimizer.step()
loss_value = loss.data[0]
# detach memory from graph
mhx = { k : (v.detach() if isinstance(v, var) else v) for k, v in mhx.items() }
summarize = (epoch % summarize_freq == 0)
take_checkpoint = (epoch != 0) and (epoch % iterations == 0)
last_100_losses.append(loss_value)
if summarize:
llprint("\rIteration %d/%d" % (epoch, iterations))
llprint("\nAvg. Logistic Loss: %.4f\n" % (np.mean(last_100_losses)))
output = output.data.cpu().numpy()
print("Real value: ", ' = ' + str(int(target_output[0])))
print("Predicted: ", ' = ' + str(int(output // 1)) + " [" + str(output) + "]")
last_100_losses = []
if take_checkpoint:
llprint("\nSaving Checkpoint ... "),
check_ptr = os.path.join(ckpts_dir, 'step_{}.pth'.format(epoch))
cur_weights = rnn.state_dict()
T.save(cur_weights, check_ptr)
llprint("Done!\n")
llprint("\nTesting generalization...\n")
rnn.eval()
for i in range(int((iterations + 1) / 10)):
llprint("\nIteration %d/%d" % (i, iterations))
# We test now the learned generalization using sequence_max_length examples
random_length = np.random.randint(2, int(sequence_max_length) * 10 + 1)
input_data, target_output, sums_text = generate_data(random_length, input_size)
if rnn.debug:
output, (chx, mhx, rv), v = rnn(input_data, (None, mhx, None), reset_experience=True, pass_through_memory=True)
else:
output, (chx, mhx, rv) = rnn(input_data, (None, mhx, None), reset_experience=True, pass_through_memory=True)
output = output.sum(dim=2, keepdim=True).sum(dim=1, keepdim=True)
output = output.data.cpu().numpy()
print("\nReal value: ", ' = ' + str(int(target_output[0])))
print("Predicted: ", ' = ' + str(int(output // 1)) + " [" + str(output) + "]")