Differentiable Neural Computers, Sparse Access Memory and Sparse Differentiable Neural Computers, for Pytorch
Go to file
2017-11-13 00:34:59 +05:30
dnc Cleanup unused code 2017-11-12 13:58:52 +05:30
docs Update dashboard image 2017-11-12 16:10:48 +05:30
tasks Update copy task defaults and readme 2017-11-12 15:56:33 +05:30
test RNNs with CUDNN implementations, make whether to forward pass thorugh memory a controllable, update readme 2017-11-10 21:29:48 +05:30
.gitignore Remove tasks from setup and add checkpoints dir to gitignore 2017-10-27 16:43:00 +05:30
.travis.yml Add travis ci 2017-10-29 22:02:31 +05:30
LICENSE Initial commit 2017-10-26 20:09:56 +05:30
README.md Update readme 2017-11-13 00:34:59 +05:30
release.sh Bump version and include release script 2017-10-26 21:30:30 +05:30
setup.cfg Initial commit, pushed into pypi 2017-10-26 20:59:05 +05:30
setup.py Bump version and add more docs 2017-11-01 12:56:24 +05:30

Differentiable Neural Computer, for Pytorch

Build Status PyPI version

This is an implementation of Differentiable Neural Computers, described in the paper Hybrid computing using a neural network with dynamic external memory, Graves et al.

Install

pip install dnc

Architecure

Usage

Parameters:

Following are the constructor parameters:

Argument Default Description
input_size None Size of the input vectors
hidden_size None Size of hidden units
rnn_type 'lstm' Type of recurrent cells used in the controller
num_layers 1 Number of layers of recurrent units in the controller
num_hidden_layers 2 Number of hidden layers per layer of the controller
bias True Bias
batch_first True Whether data is fed batch first
dropout 0 Dropout between layers in the controller
bidirectional False If the controller is bidirectional (Not yet implemented
nr_cells 5 Number of memory cells
read_heads 2 Number of read heads
cell_size 10 Size of each memory cell
nonlinearity 'tanh' If using 'rnn' as rnn_type, non-linearity of the RNNs
gpu_id -1 ID of the GPU, -1 for CPU
independent_linears False Whether to use independent linear units to derive interface vector
share_memory True Whether to share memory between controller layers

Following are the forward pass parameters:

Argument Default Description
input - The input vector (B*T*X) or (T*B*X)
hidden (None,None,None) Hidden states (controller hidden, memory hidden, read vectors)
reset_experience False Whether to reset memory (This is a parameter for the forward pass
pass_through_memory True Whether to pass through memory (This is a parameter for the forward pass

Example usage:

from dnc import DNC

rnn = DNC(
  input_size=64,
  hidden_size=128,
  rnn_type='lstm',
  num_layers=4,
  nr_cells=100,
  cell_size=32,
  read_heads=4,
  batch_first=True,
  gpu_id=0
)

(controller_hidden, memory, read_vectors) = (None, None, None)

output, (controller_hidden, memory, read_vectors) = \
  rnn(torch.randn(10, 4, 64), (controller_hidden, memory, read_vectors, reset_experience=True))

Debugging:

The debug option causes the network to return its memory hidden vectors (numpy ndarrays) for the first batch each forward step. These vectors can be analyzed or visualized, using visdom for example.

from dnc import DNC

rnn = DNC(
  input_size=64,
  hidden_size=128,
  rnn_type='lstm',
  num_layers=4,
  nr_cells=100,
  cell_size=32,
  read_heads=4,
  batch_first=True,
  gpu_id=0,
  debug=True
)

(controller_hidden, memory, read_vectors) = (None, None, None)

output, (controller_hidden, memory, read_vectors), debug_memory = \
  rnn(torch.randn(10, 4, 64), (controller_hidden, memory, read_vectors, reset_experience=True))

Memory vectors returned by forward pass (np.ndarray):

Key Y axis (dimensions) X axis (dimensions)
debug_memory['memory'] layer * time nr_cells * cell_size
debug_memory['link_matrix'] layer * time nr_cells * nr_cells
debug_memory['precedence'] layer * time nr_cells
debug_memory['read_weights'] layer * time read_heads * nr_cells
debug_memory['write_weights'] layer * time nr_cells
debug_memory['usage_vector'] layer * time nr_cells

Example copy task

The copy task, as descibed in the original paper, is included in the repo.

From the project root:

python ./tasks/copy_task.py -cuda 0 -optim rmsprop -batch_size 32 -mem_slot 64 # (original implementation)

python ./tasks/copy_task.py -cuda 0 -lr 0.001 -rnn_type lstm -nlayer 1 -nhlayer 2 -mem_slot 32 -batch_size 32 -optim adam # (faster convergence)

For the full set of options, see:

python ./tasks/copy_task.py --help

The copy task can be used to debug memory using Visdom.

Additional step required:

pip install visdom
python -m visdom.server

Open http://localhost:8097/ on your browser, and execute the copy task:

python ./tasks/copy_task.py -cuda 0

The visdom dashboard shows memory as a heatmap for batch 0 every -summarize_freq iteration:

Visdom dashboard

General noteworthy stuff

  1. DNCs converge with Adam and RMSProp learning rules, SGD generally causes them to diverge.

Repos referred to for creation of this repo: