Differentiable Neural Computers and family, for Pytorch ======================================================= Includes: 1. Differentiable Neural Computers (DNC) 2. Sparse Access Memory (SAM) 3. Sparse Differentiable Neural Computers (SDNC) .. raw:: html .. raw:: html - `Install <#install>`__ - `From source <#from-source>`__ - `Architecure <#architecure>`__ - `Usage <#usage>`__ - `DNC <#dnc>`__ - `Example usage <#example-usage>`__ - `Debugging <#debugging>`__ - `SDNC <#sdnc>`__ - `Example usage <#example-usage-1>`__ - `Debugging <#debugging-1>`__ - `SAM <#sam>`__ - `Example usage <#example-usage-2>`__ - `Debugging <#debugging-2>`__ - `Tasks <#tasks>`__ - `Copy task (with curriculum and generalization) <#copy-task-with-curriculum-and-generalization>`__ - `Generalizing Addition task <#generalizing-addition-task>`__ - `Generalizing Argmax task <#generalizing-argmax-task>`__ - `Code Structure <#code-structure>`__ - `General noteworthy stuff <#general-noteworthy-stuff>`__ .. raw:: html |Build Status| |PyPI version| This is an implementation of `Differentiable Neural Computers `__, described in the paper `Hybrid computing using a neural network with dynamic external memory, Graves et al. `__ and Sparse DNCs (SDNCs) and Sparse Access Memory (SAM) described in `Scaling Memory-Augmented Neural Networks with Sparse Reads and Writes `__. Install ------- .. code:: bash pip install dnc From source ~~~~~~~~~~~ :: git clone https://github.com/ixaxaar/pytorch-dnc cd pytorch-dnc pip install -r ./requirements.txt pip install -e . For using fully GPU based SDNCs or SAMs, install FAISS: .. code:: bash conda install faiss-gpu -c pytorch ``pytest`` is required to run the test Architecure ----------- Usage ----- DNC ~~~ **Constructor Parameters**: Following are the constructor parameters: Following are the constructor parameters: +------+------+------+ | Argu | Defa | Desc | | ment | ult | ript | | | | ion | +======+======+======+ | inpu | ``No | Size | | t\_s | ne`` | of | | ize | | the | | | | inpu | | | | t | | | | vect | | | | ors | +------+------+------+ | hidd | ``No | Size | | en\_ | ne`` | of | | size | | hidd | | | | en | | | | unit | | | | s | +------+------+------+ | rnn\ | ``'l | Type | | _typ | stm' | of | | e | `` | recu | | | | rren | | | | t | | | | cell | | | | s | | | | used | | | | in | | | | the | | | | cont | | | | roll | | | | er | +------+------+------+ | num\ | ``1` | Numb | | _lay | ` | er | | ers | | of | | | | laye | | | | rs | | | | of | | | | recu | | | | rren | | | | t | | | | unit | | | | s | | | | in | | | | the | | | | cont | | | | roll | | | | er | +------+------+------+ | num\ | ``2` | Numb | | _hid | ` | er | | den\ | | of | | _lay | | hidd | | ers | | en | | | | laye | | | | rs | | | | per | | | | laye | | | | r | | | | of | | | | the | | | | cont | | | | roll | | | | er | +------+------+------+ | bias | ``Tr | Bias | | | ue`` | | +------+------+------+ | batc | ``Tr | Whet | | h\_f | ue`` | her | | irst | | data | | | | is | | | | fed | | | | batc | | | | h | | | | firs | | | | t | +------+------+------+ | drop | ``0` | Drop | | out | ` | out | | | | betw | | | | een | | | | laye | | | | rs | | | | in | | | | the | | | | cont | | | | roll | | | | er | +------+------+------+ | bidi | ``Fa | If | | rect | lse` | the | | iona | ` | cont | | l | | roll | | | | er | | | | is | | | | bidi | | | | rect | | | | iona | | | | l | | | | (Not | | | | yet | | | | impl | | | | emen | | | | ted | +------+------+------+ | nr\_ | ``5` | Numb | | cell | ` | er | | s | | of | | | | memo | | | | ry | | | | cell | | | | s | +------+------+------+ | read | ``2` | Numb | | \_he | ` | er | | ads | | of | | | | read | | | | head | | | | s | +------+------+------+ | cell | ``10 | Size | | \_si | `` | of | | ze | | each | | | | memo | | | | ry | | | | cell | +------+------+------+ | nonl | ``'t | If | | inea | anh' | usin | | rity | `` | g | | | | 'rnn | | | | ' | | | | as | | | | ``rn | | | | n_ty | | | | pe`` | | | | , | | | | non- | | | | line | | | | arit | | | | y | | | | of | | | | the | | | | RNNs | +------+------+------+ | gpu\ | ``-1 | ID | | _id | `` | of | | | | the | | | | GPU, | | | | -1 | | | | for | | | | CPU | +------+------+------+ | inde | ``Fa | Whet | | pend | lse` | her | | ent\ | ` | to | | _lin | | use | | ears | | inde | | | | pend | | | | ent | | | | line | | | | ar | | | | unit | | | | s | | | | to | | | | deri | | | | ve | | | | inte | | | | rfac | | | | e | | | | vect | | | | or | +------+------+------+ | shar | ``Tr | Whet | | e\_m | ue`` | her | | emor | | to | | y | | shar | | | | e | | | | memo | | | | ry | | | | betw | | | | een | | | | cont | | | | roll | | | | er | | | | laye | | | | rs | +------+------+------+ Following are the forward pass parameters: +------+------+------+ | Argu | Defa | Desc | | ment | ult | ript | | | | ion | +======+======+======+ | inpu | - | The | | t | | inpu | | | | t | | | | vect | | | | or | | | | ``(B | | | | *T*X | | | | )`` | | | | or | | | | ``(T | | | | *B*X | | | | )`` | +------+------+------+ | hidd | ``(N | Hidd | | en | one, | en | | | None | stat | | | ,Non | es | | | e)`` | ``(c | | | | ontr | | | | olle | | | | r hi | | | | dden | | | | , me | | | | mory | | | | hid | | | | den, | | | | rea | | | | d ve | | | | ctor | | | | s)`` | +------+------+------+ | rese | ``Fa | Whet | | t\_e | lse` | her | | xper | ` | to | | ienc | | rese | | e | | t | | | | memo | | | | ry | +------+------+------+ | pass | ``Tr | Whet | | \_th | ue`` | her | | roug | | to | | h\_m | | pass | | emor | | thro | | y | | ugh | | | | memo | | | | ry | +------+------+------+ Example usage ^^^^^^^^^^^^^ .. code:: python from dnc import DNC rnn = DNC( input_size=64, hidden_size=128, rnn_type='lstm', num_layers=4, nr_cells=100, cell_size=32, read_heads=4, batch_first=True, gpu_id=0 ) (controller_hidden, memory, read_vectors) = (None, None, None) output, (controller_hidden, memory, read_vectors) = \ rnn(torch.randn(10, 4, 64), (controller_hidden, memory, read_vectors), reset_experience=True) Debugging ^^^^^^^^^ The ``debug`` option causes the network to return its memory hidden vectors (numpy ``ndarray``\ s) for the first batch each forward step. These vectors can be analyzed or visualized, using visdom for example. .. code:: python from dnc import DNC rnn = DNC( input_size=64, hidden_size=128, rnn_type='lstm', num_layers=4, nr_cells=100, cell_size=32, read_heads=4, batch_first=True, gpu_id=0, debug=True ) (controller_hidden, memory, read_vectors) = (None, None, None) output, (controller_hidden, memory, read_vectors), debug_memory = \ rnn(torch.randn(10, 4, 64), (controller_hidden, memory, read_vectors), reset_experience=True) Memory vectors returned by forward pass (``np.ndarray``): +-------------------------------------+-----------------------+----------------------------+ | Key | Y axis (dimensions) | X axis (dimensions) | +=====================================+=======================+============================+ | ``debug_memory['memory']`` | layer \* time | nr\_cells \* cell\_size | +-------------------------------------+-----------------------+----------------------------+ | ``debug_memory['link_matrix']`` | layer \* time | nr\_cells \* nr\_cells | +-------------------------------------+-----------------------+----------------------------+ | ``debug_memory['precedence']`` | layer \* time | nr\_cells | +-------------------------------------+-----------------------+----------------------------+ | ``debug_memory['read_weights']`` | layer \* time | read\_heads \* nr\_cells | +-------------------------------------+-----------------------+----------------------------+ | ``debug_memory['write_weights']`` | layer \* time | nr\_cells | +-------------------------------------+-----------------------+----------------------------+ | ``debug_memory['usage_vector']`` | layer \* time | nr\_cells | +-------------------------------------+-----------------------+----------------------------+ SDNC ~~~~ **Constructor Parameters**: Following are the constructor parameters: +------+------+------+ | Argu | Defa | Desc | | ment | ult | ript | | | | ion | +======+======+======+ | inpu | ``No | Size | | t\_s | ne`` | of | | ize | | the | | | | inpu | | | | t | | | | vect | | | | ors | +------+------+------+ | hidd | ``No | Size | | en\_ | ne`` | of | | size | | hidd | | | | en | | | | unit | | | | s | +------+------+------+ | rnn\ | ``'l | Type | | _typ | stm' | of | | e | `` | recu | | | | rren | | | | t | | | | cell | | | | s | | | | used | | | | in | | | | the | | | | cont | | | | roll | | | | er | +------+------+------+ | num\ | ``1` | Numb | | _lay | ` | er | | ers | | of | | | | laye | | | | rs | | | | of | | | | recu | | | | rren | | | | t | | | | unit | | | | s | | | | in | | | | the | | | | cont | | | | roll | | | | er | +------+------+------+ | num\ | ``2` | Numb | | _hid | ` | er | | den\ | | of | | _lay | | hidd | | ers | | en | | | | laye | | | | rs | | | | per | | | | laye | | | | r | | | | of | | | | the | | | | cont | | | | roll | | | | er | +------+------+------+ | bias | ``Tr | Bias | | | ue`` | | +------+------+------+ | batc | ``Tr | Whet | | h\_f | ue`` | her | | irst | | data | | | | is | | | | fed | | | | batc | | | | h | | | | firs | | | | t | +------+------+------+ | drop | ``0` | Drop | | out | ` | out | | | | betw | | | | een | | | | laye | | | | rs | | | | in | | | | the | | | | cont | | | | roll | | | | er | +------+------+------+ | bidi | ``Fa | If | | rect | lse` | the | | iona | ` | cont | | l | | roll | | | | er | | | | is | | | | bidi | | | | rect | | | | iona | | | | l | | | | (Not | | | | yet | | | | impl | | | | emen | | | | ted | +------+------+------+ | nr\_ | ``50 | Numb | | cell | 00`` | er | | s | | of | | | | memo | | | | ry | | | | cell | | | | s | +------+------+------+ | read | ``4` | Numb | | \_he | ` | er | | ads | | of | | | | read | | | | head | | | | s | +------+------+------+ | spar | ``4` | Numb | | se\_ | ` | er | | read | | of | | s | | spar | | | | se | | | | memo | | | | ry | | | | read | | | | s | | | | per | | | | read | | | | head | +------+------+------+ | temp | ``4` | Numb | | oral | ` | er | | \_re | | of | | ads | | temp | | | | oral | | | | read | | | | s | +------+------+------+ | cell | ``10 | Size | | \_si | `` | of | | ze | | each | | | | memo | | | | ry | | | | cell | +------+------+------+ | nonl | ``'t | If | | inea | anh' | usin | | rity | `` | g | | | | 'rnn | | | | ' | | | | as | | | | ``rn | | | | n_ty | | | | pe`` | | | | , | | | | non- | | | | line | | | | arit | | | | y | | | | of | | | | the | | | | RNNs | +------+------+------+ | gpu\ | ``-1 | ID | | _id | `` | of | | | | the | | | | GPU, | | | | -1 | | | | for | | | | CPU | +------+------+------+ | inde | ``Fa | Whet | | pend | lse` | her | | ent\ | ` | to | | _lin | | use | | ears | | inde | | | | pend | | | | ent | | | | line | | | | ar | | | | unit | | | | s | | | | to | | | | deri | | | | ve | | | | inte | | | | rfac | | | | e | | | | vect | | | | or | +------+------+------+ | shar | ``Tr | Whet | | e\_m | ue`` | her | | emor | | to | | y | | shar | | | | e | | | | memo | | | | ry | | | | betw | | | | een | | | | cont | | | | roll | | | | er | | | | laye | | | | rs | +------+------+------+ Following are the forward pass parameters: +------+------+------+ | Argu | Defa | Desc | | ment | ult | ript | | | | ion | +======+======+======+ | inpu | - | The | | t | | inpu | | | | t | | | | vect | | | | or | | | | ``(B | | | | *T*X | | | | )`` | | | | or | | | | ``(T | | | | *B*X | | | | )`` | +------+------+------+ | hidd | ``(N | Hidd | | en | one, | en | | | None | stat | | | ,Non | es | | | e)`` | ``(c | | | | ontr | | | | olle | | | | r hi | | | | dden | | | | , me | | | | mory | | | | hid | | | | den, | | | | rea | | | | d ve | | | | ctor | | | | s)`` | +------+------+------+ | rese | ``Fa | Whet | | t\_e | lse` | her | | xper | ` | to | | ienc | | rese | | e | | t | | | | memo | | | | ry | +------+------+------+ | pass | ``Tr | Whet | | \_th | ue`` | her | | roug | | to | | h\_m | | pass | | emor | | thro | | y | | ugh | | | | memo | | | | ry | +------+------+------+ Example usage ^^^^^^^^^^^^^ .. code:: python from dnc import SDNC rnn = SDNC( input_size=64, hidden_size=128, rnn_type='lstm', num_layers=4, nr_cells=100, cell_size=32, read_heads=4, sparse_reads=4, batch_first=True, gpu_id=0 ) (controller_hidden, memory, read_vectors) = (None, None, None) output, (controller_hidden, memory, read_vectors) = \ rnn(torch.randn(10, 4, 64), (controller_hidden, memory, read_vectors), reset_experience=True) Debugging ^^^^^^^^^ The ``debug`` option causes the network to return its memory hidden vectors (numpy ``ndarray``\ s) for the first batch each forward step. These vectors can be analyzed or visualized, using visdom for example. .. code:: python from dnc import SDNC rnn = SDNC( input_size=64, hidden_size=128, rnn_type='lstm', num_layers=4, nr_cells=100, cell_size=32, read_heads=4, batch_first=True, sparse_reads=4, temporal_reads=4, gpu_id=0, debug=True ) (controller_hidden, memory, read_vectors) = (None, None, None) output, (controller_hidden, memory, read_vectors), debug_memory = \ rnn(torch.randn(10, 4, 64), (controller_hidden, memory, read_vectors), reset_experience=True) Memory vectors returned by forward pass (``np.ndarray``): +------+------+------+ | Key | Y | X | | | axis | axis | | | (dim | (dim | | | ensi | ensi | | | ons) | ons) | +======+======+======+ | ``de | laye | nr\_ | | bug_ | r | cell | | memo | \* | s | | ry[' | time | \* | | memo | | cell | | ry'] | | \_si | | `` | | ze | +------+------+------+ | ``de | laye | spar | | bug_ | r | se\_ | | memo | \* | read | | ry[' | time | s+2\ | | visi | | *te | | ble_ | | mpor | | memo | | al\_ | | ry'] | | read | | `` | | s+1 | | | | * | | | | nr\_ | | | | cell | | | | s | +------+------+------+ | ``de | laye | spar | | bug_ | r | se\_ | | memo | \* | read | | ry[' | time | s+2\ | | read | | *tem | | _pos | | pora | | itio | | l\_r | | ns'] | | eads | | `` | | +1 | +------+------+------+ | ``de | laye | spar | | bug_ | r | se\_ | | memo | \* | read | | ry[' | time | s+2\ | | link | | *te | | _mat | | mpor | | rix' | | al\_ | | ]`` | | read | | | | s+1 | | | | * | | | | spar | | | | se\_ | | | | read | | | | s+2\ | | | | *tem | | | | pora | | | | l\_r | | | | eads | | | | +1 | +------+------+------+ | ``de | laye | spar | | bug_ | r | se\_ | | memo | \* | read | | ry[' | time | s+2\ | | rev_ | | *te | | link | | mpor | | _mat | | al\_ | | rix' | | read | | ]`` | | s+1 | | | | * | | | | spar | | | | se\_ | | | | read | | | | s+2\ | | | | *tem | | | | pora | | | | l\_r | | | | eads | | | | +1 | +------+------+------+ | ``de | laye | nr\_ | | bug_ | r | cell | | memo | \* | s | | ry[' | time | | | prec | | | | eden | | | | ce'] | | | | `` | | | +------+------+------+ | ``de | laye | read | | bug_ | r | \_he | | memo | \* | ads | | ry[' | time | \* | | read | | nr\_ | | _wei | | cell | | ghts | | s | | ']`` | | | +------+------+------+ | ``de | laye | nr\_ | | bug_ | r | cell | | memo | \* | s | | ry[' | time | | | writ | | | | e_we | | | | ight | | | | s']` | | | | ` | | | +------+------+------+ | ``de | laye | nr\_ | | bug_ | r | cell | | memo | \* | s | | ry[' | time | | | usag | | | | e']` | | | | ` | | | +------+------+------+ SAM ~~~ **Constructor Parameters**: Following are the constructor parameters: +------+------+------+ | Argu | Defa | Desc | | ment | ult | ript | | | | ion | +======+======+======+ | inpu | ``No | Size | | t\_s | ne`` | of | | ize | | the | | | | inpu | | | | t | | | | vect | | | | ors | +------+------+------+ | hidd | ``No | Size | | en\_ | ne`` | of | | size | | hidd | | | | en | | | | unit | | | | s | +------+------+------+ | rnn\ | ``'l | Type | | _typ | stm' | of | | e | `` | recu | | | | rren | | | | t | | | | cell | | | | s | | | | used | | | | in | | | | the | | | | cont | | | | roll | | | | er | +------+------+------+ | num\ | ``1` | Numb | | _lay | ` | er | | ers | | of | | | | laye | | | | rs | | | | of | | | | recu | | | | rren | | | | t | | | | unit | | | | s | | | | in | | | | the | | | | cont | | | | roll | | | | er | +------+------+------+ | num\ | ``2` | Numb | | _hid | ` | er | | den\ | | of | | _lay | | hidd | | ers | | en | | | | laye | | | | rs | | | | per | | | | laye | | | | r | | | | of | | | | the | | | | cont | | | | roll | | | | er | +------+------+------+ | bias | ``Tr | Bias | | | ue`` | | +------+------+------+ | batc | ``Tr | Whet | | h\_f | ue`` | her | | irst | | data | | | | is | | | | fed | | | | batc | | | | h | | | | firs | | | | t | +------+------+------+ | drop | ``0` | Drop | | out | ` | out | | | | betw | | | | een | | | | laye | | | | rs | | | | in | | | | the | | | | cont | | | | roll | | | | er | +------+------+------+ | bidi | ``Fa | If | | rect | lse` | the | | iona | ` | cont | | l | | roll | | | | er | | | | is | | | | bidi | | | | rect | | | | iona | | | | l | | | | (Not | | | | yet | | | | impl | | | | emen | | | | ted | +------+------+------+ | nr\_ | ``50 | Numb | | cell | 00`` | er | | s | | of | | | | memo | | | | ry | | | | cell | | | | s | +------+------+------+ | read | ``4` | Numb | | \_he | ` | er | | ads | | of | | | | read | | | | head | | | | s | +------+------+------+ | spar | ``4` | Numb | | se\_ | ` | er | | read | | of | | s | | spar | | | | se | | | | memo | | | | ry | | | | read | | | | s | | | | per | | | | read | | | | head | +------+------+------+ | cell | ``10 | Size | | \_si | `` | of | | ze | | each | | | | memo | | | | ry | | | | cell | +------+------+------+ | nonl | ``'t | If | | inea | anh' | usin | | rity | `` | g | | | | 'rnn | | | | ' | | | | as | | | | ``rn | | | | n_ty | | | | pe`` | | | | , | | | | non- | | | | line | | | | arit | | | | y | | | | of | | | | the | | | | RNNs | +------+------+------+ | gpu\ | ``-1 | ID | | _id | `` | of | | | | the | | | | GPU, | | | | -1 | | | | for | | | | CPU | +------+------+------+ | inde | ``Fa | Whet | | pend | lse` | her | | ent\ | ` | to | | _lin | | use | | ears | | inde | | | | pend | | | | ent | | | | line | | | | ar | | | | unit | | | | s | | | | to | | | | deri | | | | ve | | | | inte | | | | rfac | | | | e | | | | vect | | | | or | +------+------+------+ | shar | ``Tr | Whet | | e\_m | ue`` | her | | emor | | to | | y | | shar | | | | e | | | | memo | | | | ry | | | | betw | | | | een | | | | cont | | | | roll | | | | er | | | | laye | | | | rs | +------+------+------+ Following are the forward pass parameters: +------+------+------+ | Argu | Defa | Desc | | ment | ult | ript | | | | ion | +======+======+======+ | inpu | - | The | | t | | inpu | | | | t | | | | vect | | | | or | | | | ``(B | | | | *T*X | | | | )`` | | | | or | | | | ``(T | | | | *B*X | | | | )`` | +------+------+------+ | hidd | ``(N | Hidd | | en | one, | en | | | None | stat | | | ,Non | es | | | e)`` | ``(c | | | | ontr | | | | olle | | | | r hi | | | | dden | | | | , me | | | | mory | | | | hid | | | | den, | | | | rea | | | | d ve | | | | ctor | | | | s)`` | +------+------+------+ | rese | ``Fa | Whet | | t\_e | lse` | her | | xper | ` | to | | ienc | | rese | | e | | t | | | | memo | | | | ry | +------+------+------+ | pass | ``Tr | Whet | | \_th | ue`` | her | | roug | | to | | h\_m | | pass | | emor | | thro | | y | | ugh | | | | memo | | | | ry | +------+------+------+ Example usage ^^^^^^^^^^^^^ .. code:: python from dnc import SAM rnn = SAM( input_size=64, hidden_size=128, rnn_type='lstm', num_layers=4, nr_cells=100, cell_size=32, read_heads=4, sparse_reads=4, batch_first=True, gpu_id=0 ) (controller_hidden, memory, read_vectors) = (None, None, None) output, (controller_hidden, memory, read_vectors) = \ rnn(torch.randn(10, 4, 64), (controller_hidden, memory, read_vectors), reset_experience=True) Debugging ^^^^^^^^^ The ``debug`` option causes the network to return its memory hidden vectors (numpy ``ndarray``\ s) for the first batch each forward step. These vectors can be analyzed or visualized, using visdom for example. .. code:: python from dnc import SAM rnn = SAM( input_size=64, hidden_size=128, rnn_type='lstm', num_layers=4, nr_cells=100, cell_size=32, read_heads=4, batch_first=True, sparse_reads=4, gpu_id=0, debug=True ) (controller_hidden, memory, read_vectors) = (None, None, None) output, (controller_hidden, memory, read_vectors), debug_memory = \ rnn(torch.randn(10, 4, 64), (controller_hidden, memory, read_vectors), reset_experience=True) Memory vectors returned by forward pass (``np.ndarray``): +------+------+------+ | Key | Y | X | | | axis | axis | | | (dim | (dim | | | ensi | ensi | | | ons) | ons) | +======+======+======+ | ``de | laye | nr\_ | | bug_ | r | cell | | memo | \* | s | | ry[' | time | \* | | memo | | cell | | ry'] | | \_si | | `` | | ze | +------+------+------+ | ``de | laye | spar | | bug_ | r | se\_ | | memo | \* | read | | ry[' | time | s+2\ | | visi | | *te | | ble_ | | mpor | | memo | | al\_ | | ry'] | | read | | `` | | s+1 | | | | * | | | | nr\_ | | | | cell | | | | s | +------+------+------+ | ``de | laye | spar | | bug_ | r | se\_ | | memo | \* | read | | ry[' | time | s+2\ | | read | | *tem | | _pos | | pora | | itio | | l\_r | | ns'] | | eads | | `` | | +1 | +------+------+------+ | ``de | laye | read | | bug_ | r | \_he | | memo | \* | ads | | ry[' | time | \* | | read | | nr\_ | | _wei | | cell | | ghts | | s | | ']`` | | | +------+------+------+ | ``de | laye | nr\_ | | bug_ | r | cell | | memo | \* | s | | ry[' | time | | | writ | | | | e_we | | | | ight | | | | s']` | | | | ` | | | +------+------+------+ | ``de | laye | nr\_ | | bug_ | r | cell | | memo | \* | s | | ry[' | time | | | usag | | | | e']` | | | | ` | | | +------+------+------+ Tasks ----- Copy task (with curriculum and generalization) ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ The copy task, as descibed in the original paper, is included in the repo. From the project root: .. code:: bash python ./tasks/copy_task.py -cuda 0 -optim rmsprop -batch_size 32 -mem_slot 64 # (like original implementation) python ./tasks/copy_task.py -cuda 0 -lr 0.001 -rnn_type lstm -nlayer 1 -nhlayer 2 -dropout 0 -mem_slot 32 -batch_size 1000 -optim adam -sequence_max_length 8 # (faster convergence) For SDNCs: python ./tasks/copy_task.py -cuda 0 -lr 0.001 -rnn_type lstm -memory_type sdnc -nlayer 1 -nhlayer 2 -dropout 0 -mem_slot 100 -mem_size 10 -read_heads 1 -sparse_reads 10 -batch_size 20 -optim adam -sequence_max_length 10 and for curriculum learning for SDNCs: python ./tasks/copy_task.py -cuda 0 -lr 0.001 -rnn_type lstm -memory_type sdnc -nlayer 1 -nhlayer 2 -dropout 0 -mem_slot 100 -mem_size 10 -read_heads 1 -sparse_reads 4 -temporal_reads 4 -batch_size 20 -optim adam -sequence_max_length 4 -curriculum_increment 2 -curriculum_freq 10000 For the full set of options, see: :: python ./tasks/copy_task.py --help The copy task can be used to debug memory using `Visdom `__. Additional step required: .. code:: bash pip install visdom python -m visdom.server Open http://localhost:8097/ on your browser, and execute the copy task: .. code:: bash python ./tasks/copy_task.py -cuda 0 The visdom dashboard shows memory as a heatmap for batch 0 every ``-summarize_freq`` iteration: .. figure:: ./docs/dnc-mem-debug.png :alt: Visdom dashboard Visdom dashboard Generalizing Addition task ~~~~~~~~~~~~~~~~~~~~~~~~~~ The adding task is as described in `this github pull request `__. This task - creates one-hot vectors of size ``input_size``, each representing a number - feeds a sentence of them to a network - the output of which is added to get the sum of the decoded outputs The task first trains the network for sentences of size ~100, and then tests if the network genetalizes for lengths ~1000. .. code:: bash python ./tasks/adding_task.py -cuda 0 -lr 0.0001 -rnn_type lstm -memory_type sam -nlayer 1 -nhlayer 1 -nhid 100 -dropout 0 -mem_slot 1000 -mem_size 32 -read_heads 1 -sparse_reads 4 -batch_size 20 -optim rmsprop -input_size 3 -sequence_max_length 100 Generalizing Argmax task ~~~~~~~~~~~~~~~~~~~~~~~~ The second adding task is similar to the first one, except that the network's output at the last time step is expected to be the argmax of the input. .. code:: bash python ./tasks/argmax_task.py -cuda 0 -lr 0.0001 -rnn_type lstm -memory_type dnc -nlayer 1 -nhlayer 1 -nhid 100 -dropout 0 -mem_slot 100 -mem_size 10 -read_heads 2 -batch_size 1 -optim rmsprop -sequence_max_length 15 -input_size 10 -iterations 10000 Code Structure -------------- 1. DNCs: - `dnc/dnc.py `__ - Controller code. - `dnc/memory.py `__ - Memory module. 2. SDNCs: - `dnc/sdnc.py `__ - Controller code, inherits `dnc.py `__. - `dnc/sparse\_temporal\_memory.py `__ - Memory module. - `dnc/flann\_index.py `__ - Memory index using kNN. 3. SAMs: - `dnc/sam.py `__ - Controller code, inherits `dnc.py `__. - `dnc/sparse\_memory.py `__ - Memory module. - `dnc/flann\_index.py `__ - Memory index using kNN. 4. Tests: - All tests are in `./tests <./tests>`__ folder. General noteworthy stuff ------------------------ 1. SDNCs use the `FLANN approximate nearest neigbhour library `__, with its python binding `pyflann3 `__ and `FAISS `__. FLANN can be installed either from pip (automatically as a dependency), or from source (e.g. for multithreading via OpenMP): .. code:: bash # install openmp first: e.g. `sudo pacman -S openmp` for Arch. git clone git://github.com/mariusmuja/flann.git cd flann mkdir build cd build cmake .. make -j 4 sudo make install FAISS can be installed using: .. code:: bash conda install faiss-gpu -c pytorch FAISS is much faster, has a GPU implementation and is interoperable with pytorch tensors. We try to use FAISS by default, in absence of which we fall back to FLANN. 2. ``nan``\ s in the gradients are common, try with different batch sizes Repos referred to for creation of this repo: - `deepmind/dnc `__ - `ypxie/pytorch-NeuCom `__ - `jingweiz/pytorch-dnc `__ .. |Build Status| image:: https://travis-ci.org/ixaxaar/pytorch-dnc.svg?branch=master :target: https://travis-ci.org/ixaxaar/pytorch-dnc .. |PyPI version| image:: https://badge.fury.io/py/dnc.svg :target: https://badge.fury.io/py/dnc