Modify how sequence max length is scaled for generalization

This commit is contained in:
ixaxaar 2017-12-19 14:19:06 +05:30
parent 7719698fff
commit c74defd78b
3 changed files with 14 additions and 289 deletions

View File

@ -367,7 +367,7 @@ Memory vectors returned by forward pass (`np.ndarray`):
## Tasks
### Copy task
### Copy task (with curriculum and generalization)
The copy task, as descibed in the original paper, is included in the repo.
@ -375,13 +375,13 @@ From the project root:
```bash
python ./tasks/copy_task.py -cuda 0 -optim rmsprop -batch_size 32 -mem_slot 64 # (like original implementation)
python3 ./tasks/copy_task.py -cuda 0 -lr 0.001 -rnn_type lstm -nlayer 1 -nhlayer 2 -dropout 0 -mem_slot 32 -batch_size 1000 -optim adam -sequence_max_length 8 # (faster convergence)
python ./tasks/copy_task.py -cuda 0 -lr 0.001 -rnn_type lstm -nlayer 1 -nhlayer 2 -dropout 0 -mem_slot 32 -batch_size 1000 -optim adam -sequence_max_length 8 # (faster convergence)
For SDNCs:
python3 -B ./tasks/copy_task.py -cuda 0 -lr 0.001 -rnn_type lstm -memory_type sdnc -nlayer 1 -nhlayer 2 -dropout 0 -mem_slot 100 -mem_size 10 -read_heads 1 -sparse_reads 10 -batch_size 20 -optim adam -sequence_max_length 10
python ./tasks/copy_task.py -cuda 0 -lr 0.001 -rnn_type lstm -memory_type sdnc -nlayer 1 -nhlayer 2 -dropout 0 -mem_slot 100 -mem_size 10 -read_heads 1 -sparse_reads 10 -batch_size 20 -optim adam -sequence_max_length 10
and for curriculum learning for SDNCs:
python3 -B ./tasks/copy_task.py -cuda 0 -lr 0.001 -rnn_type lstm -memory_type sdnc -nlayer 1 -nhlayer 2 -dropout 0 -mem_slot 100 -mem_size 10 -read_heads 1 -sparse_reads 4 -temporal_reads 4 -batch_size 20 -optim adam -sequence_max_length 4 -curriculum_increment 2 -curriculum_freq 10000
python ./tasks/copy_task.py -cuda 0 -lr 0.001 -rnn_type lstm -memory_type sdnc -nlayer 1 -nhlayer 2 -dropout 0 -mem_slot 100 -mem_size 10 -read_heads 1 -sparse_reads 4 -temporal_reads 4 -batch_size 20 -optim adam -sequence_max_length 4 -curriculum_increment 2 -curriculum_freq 10000
```
For the full set of options, see:
@ -419,18 +419,19 @@ This task
The task first trains the network for sentences of size ~100, and then tests if the network genetalizes for lengths ~1000.
```bash
python3 -B ./tasks/adding_task.py -cuda 0 -lr 0.0001 -rnn_type lstm -memory_type sam -nlayer 1 -nhlayer 1 -nhid 100 -dropout 0 -mem_slot 1000 -mem_size 32 -read_heads 1 -sparse_reads 4 -batch_size 20 -optim rmsprop -input_size 3 -sequence_max_length 1000
python ./tasks/adding_task.py -cuda 0 -lr 0.0001 -rnn_type lstm -memory_type sam -nlayer 1 -nhlayer 1 -nhid 100 -dropout 0 -mem_slot 1000 -mem_size 32 -read_heads 1 -sparse_reads 4 -batch_size 20 -optim rmsprop -input_size 3 -sequence_max_length 100
```
### Generalizing Addition task v2
### Generalizing Argmax task
The second adding task is similar to the first one, except that the network's output at the last time step is used for loss calculation, forcing the network to learn to add.
The second adding task is similar to the first one, except that the network's output at the last time step is expected to be the argmax of the input.
```bash
python3 -B ./tasks/adding_task_v2.py -cuda 0 -lr 0.0001 -rnn_type lstm -memory_type sam -nlayer 1 -nhlayer 1 -nhid 100 -dropout 0 -mem_slot 1000 -mem_size 32 -read_heads 1 -sparse_reads 4 -batch_size 20 -optim rmsprop -input_size 3 -sequence_max_length 1000
python ./tasks/argmax_task.py -cuda 0 -lr 0.0001 -rnn_type lstm -memory_type dnc -nlayer 1 -nhlayer 1 -nhid 100 -dropout 0 -mem_slot 100 -mem_size 10 -read_heads 2 -batch_size 1 -optim rmsprop -sequence_max_length 15 -input_size 10 -iterations 10000
```
## Code Structure
1. DNCs:

View File

@ -206,7 +206,7 @@ if __name__ == '__main__':
llprint("\rIteration {ep}/{tot}".format(ep=epoch, tot=iterations))
optimizer.zero_grad()
# We use for training just (sequence_max_length / 10) examples
random_length = np.random.randint(2, (sequence_max_length / 10) + 1)
random_length = np.random.randint(2, (sequence_max_length) + 1)
input_data, target_output, sums_text = generate_data(random_length, input_size)
if rnn.debug:
@ -226,12 +226,12 @@ if __name__ == '__main__':
# detach memory from graph
mhx = { k : (v.detach() if isinstance(v, var) else v) for k, v in mhx.items() }
summerize = (epoch % summarize_freq == 0)
summarize = (epoch % summarize_freq == 0)
take_checkpoint = (epoch != 0) and (epoch % iterations == 0)
last_100_losses.append(loss_value)
if summerize:
if summarize:
llprint("\rIteration %d/%d" % (epoch, iterations))
llprint("\nAvg. Logistic Loss: %.4f\n" % (np.mean(last_100_losses)))
output = output.data.cpu().numpy()
@ -250,10 +250,10 @@ if __name__ == '__main__':
rnn.eval()
for i in range(int(iterations + 1 / 10)):
for i in range(int((iterations + 1) / 10)):
llprint("\nIteration %d/%d" % (i, iterations))
# We test now the learned generalization using sequence_max_length examples
random_length = np.random.randint(2, int(sequence_max_length) + 1)
random_length = np.random.randint(2, int(sequence_max_length) * 10 + 1)
input_data, target_output, sums_text = generate_data(random_length, input_size)
if rnn.debug:

View File

@ -1,276 +0,0 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
import warnings
warnings.filterwarnings('ignore')
import numpy as np
import getopt
import sys
import os
import math
import time
import argparse
from visdom import Visdom
sys.path.insert(0, os.path.join('..', '..'))
import torch as T
from torch.autograd import Variable as var
import torch.nn.functional as F
import torch.optim as optim
from torch.nn.utils import clip_grad_norm
from dnc.dnc import DNC
from dnc.sdnc import SDNC
from dnc.sam import SAM
from dnc.util import *
parser = argparse.ArgumentParser(description='PyTorch Differentiable Neural Computer')
parser.add_argument('-input_size', type=int, default=6, help='dimension of input feature')
parser.add_argument('-rnn_type', type=str, default='lstm', help='type of recurrent cells to use for the controller')
parser.add_argument('-nhid', type=int, default=100, help='number of hidden units of the inner nn')
parser.add_argument('-dropout', type=float, default=0, help='controller dropout')
parser.add_argument('-memory_type', type=str, default='dnc', help='dense or sparse memory: dnc | sdnc | sam')
parser.add_argument('-nlayer', type=int, default=1, help='number of layers')
parser.add_argument('-nhlayer', type=int, default=2, help='number of hidden layers')
parser.add_argument('-lr', type=float, default=1e-4, help='initial learning rate')
parser.add_argument('-optim', type=str, default='adam', help='learning rule, supports adam|rmsprop')
parser.add_argument('-clip', type=float, default=50, help='gradient clipping')
parser.add_argument('-batch_size', type=int, default=100, metavar='N', help='batch size')
parser.add_argument('-mem_size', type=int, default=20, help='memory dimension')
parser.add_argument('-mem_slot', type=int, default=16, help='number of memory slots')
parser.add_argument('-read_heads', type=int, default=4, help='number of read heads')
parser.add_argument('-sparse_reads', type=int, default=10, help='number of sparse reads per read head')
parser.add_argument('-temporal_reads', type=int, default=2, help='number of temporal reads')
parser.add_argument('-sequence_max_length', type=int, default=4, metavar='N', help='sequence_max_length')
parser.add_argument('-cuda', type=int, default=-1, help='Cuda GPU ID, -1 for CPU')
parser.add_argument('-iterations', type=int, default=2000, metavar='N', help='total number of iteration')
parser.add_argument('-summarize_freq', type=int, default=100, metavar='N', help='summarize frequency')
parser.add_argument('-check_freq', type=int, default=100, metavar='N', help='check point frequency')
parser.add_argument('-visdom', action='store_true', help='plot memory content on visdom per -summarize_freq steps')
args = parser.parse_args()
print(args)
viz = Visdom()
# assert viz.check_connection()
if args.cuda != -1:
print('Using CUDA.')
T.manual_seed(1111)
else:
print('Using CPU.')
def llprint(message):
sys.stdout.write(message)
sys.stdout.flush()
def onehot(x, n):
ret = np.zeros(n).astype(np.float32)
ret[x] = 1.0
return ret
def generate_data(length, size):
content = np.random.randint(0, size - 1, length)
seqlen = length + 1
x_seq_list = [float('nan')] * seqlen
sums = 0.0
sums_text = ""
for i in range(seqlen):
if (i < length):
x_seq_list[i] = onehot(content[i], size)
sums += content[i]
sums_text += str(content[i]) + " + "
else:
x_seq_list[i] = onehot(size - 1, size)
x_seq_list = np.array(x_seq_list)
x_seq_list = x_seq_list.reshape((1,) + x_seq_list.shape)
x_seq_list = np.reshape(x_seq_list, (1, -1, size))
target_output = np.zeros((1, 1, seqlen), dtype=np.float32)
target_output[:, -1, -1] = sums
target_output = np.reshape(target_output, (1, -1, 1))
weights_vec = np.zeros((1, 1, seqlen), dtype=np.float32)
weights_vec[:, -1, -1] = 1.0
weights_vec = np.reshape(weights_vec, (1, -1, 1))
return cudavec(x_seq_list, gpu_id=args.cuda).float(), \
cudavec(target_output, gpu_id=args.cuda).float(), sums_text, \
cudavec(weights_vec, gpu_id=args.cuda)
if __name__ == '__main__':
dirname = os.path.dirname(__file__)
ckpts_dir = os.path.join(dirname, 'checkpoints')
input_size = args.input_size
memory_type = args.memory_type
lr = args.lr
clip = args.clip
batch_size = args.batch_size
sequence_max_length = args.sequence_max_length
cuda = args.cuda
iterations = args.iterations
summarize_freq = args.summarize_freq
check_freq = args.check_freq
visdom = args.visdom
from_checkpoint = None
if args.memory_type == 'dnc':
rnn = DNC(
input_size=args.input_size,
hidden_size=args.nhid,
rnn_type=args.rnn_type,
num_layers=args.nlayer,
num_hidden_layers=args.nhlayer,
dropout=args.dropout,
nr_cells=args.mem_slot,
cell_size=args.mem_size,
read_heads=args.read_heads,
gpu_id=args.cuda,
debug=args.visdom,
batch_first=True,
independent_linears=True
)
elif args.memory_type == 'sdnc':
rnn = SDNC(
input_size=args.input_size,
hidden_size=args.nhid,
rnn_type=args.rnn_type,
num_layers=args.nlayer,
num_hidden_layers=args.nhlayer,
dropout=args.dropout,
nr_cells=args.mem_slot,
cell_size=args.mem_size,
sparse_reads=args.sparse_reads,
temporal_reads=args.temporal_reads,
read_heads=args.read_heads,
gpu_id=args.cuda,
debug=args.visdom,
batch_first=True,
independent_linears=False
)
elif args.memory_type == 'sam':
rnn = SAM(
input_size=args.input_size,
hidden_size=args.nhid,
rnn_type=args.rnn_type,
num_layers=args.nlayer,
num_hidden_layers=args.nhlayer,
dropout=args.dropout,
nr_cells=args.mem_slot,
cell_size=args.mem_size,
sparse_reads=args.sparse_reads,
read_heads=args.read_heads,
gpu_id=args.cuda,
debug=args.visdom,
batch_first=True,
independent_linears=False
)
else:
raise Exception('Not recognized type of memory')
if args.cuda != -1:
rnn = rnn.cuda(args.cuda)
print(rnn)
last_save_losses = []
if args.optim == 'adam':
optimizer = optim.Adam(rnn.parameters(), lr=args.lr, eps=1e-9, betas=[0.9, 0.98]) # 0.0001
elif args.optim == 'adamax':
optimizer = optim.Adamax(rnn.parameters(), lr=args.lr, eps=1e-9, betas=[0.9, 0.98]) # 0.0001
elif args.optim == 'rmsprop':
optimizer = optim.RMSprop(rnn.parameters(), lr=args.lr, momentum=0.9, eps=1e-10) # 0.0001
elif args.optim == 'sgd':
optimizer = optim.SGD(rnn.parameters(), lr=args.lr) # 0.01
elif args.optim == 'adagrad':
optimizer = optim.Adagrad(rnn.parameters(), lr=args.lr)
elif args.optim == 'adadelta':
optimizer = optim.Adadelta(rnn.parameters(), lr=args.lr)
last_100_losses = []
(chx, mhx, rv) = (None, None, None)
for epoch in range(iterations + 1):
llprint("\rIteration {ep}/{tot}".format(ep=epoch, tot=iterations))
optimizer.zero_grad()
# We use for training just (sequence_max_length / 10) examples
random_length = np.random.randint(2, (sequence_max_length / 10) + 1)
input_data, target_output, sums_text, loss_weights = generate_data(random_length, input_size)
if rnn.debug:
output, (chx, mhx, rv), v = rnn(input_data, (None, mhx, None), reset_experience=True, pass_through_memory=True)
else:
output, (chx, mhx, rv) = rnn(input_data, (None, mhx, None), reset_experience=True, pass_through_memory=True)
loss = T.mean(((loss_weights * output).sum(-1, keepdim=True) - target_output) ** 2)
loss.backward()
T.nn.utils.clip_grad_norm(rnn.parameters(), args.clip)
optimizer.step()
loss_value = loss.data[0]
# detach memory from graph
mhx = { k : (v.detach() if isinstance(v, var) else v) for k, v in mhx.items() }
summerize = (epoch % summarize_freq == 0)
take_checkpoint = (epoch != 0) and (epoch % iterations == 0)
last_100_losses.append(loss_value)
if summerize:
output = output[:, -1, :].sum().data.cpu().numpy()[0]
target_output = target_output.sum().data.cpu().numpy()
llprint("\rIteration %d/%d" % (epoch, iterations))
llprint("\nAvg. Logistic Loss: %.4f\n" % (np.mean(last_100_losses)))
print(target_output)
print("Real value: ", ' = ' + str(int(target_output[0])))
print("Predicted: ", ' = ' + str(int(output // 1)) + " [" + str(output) + "]")
last_100_losses = []
if take_checkpoint:
llprint("\nSaving Checkpoint ... "),
check_ptr = os.path.join(ckpts_dir, 'step_{}.pth'.format(epoch))
cur_weights = rnn.state_dict()
T.save(cur_weights, check_ptr)
llprint("Done!\n")
llprint("\nTesting generalization...\n")
rnn.eval()
for i in range(int(iterations + 1 / 10)):
llprint("\nIteration %d/%d" % (i, iterations))
# We test now the learned generalization using sequence_max_length examples
random_length = np.random.randint(2, sequence_max_length + 1)
input_data, target_output, sums_text, loss_weights = generate_data(random_length, input_size)
if rnn.debug:
output, (chx, mhx, rv), v = rnn(input_data, (None, mhx, None), reset_experience=True, pass_through_memory=True)
else:
output, (chx, mhx, rv) = rnn(input_data, (None, mhx, None), reset_experience=True, pass_through_memory=True)
output = output[:, -1, :].sum().data.cpu().numpy()[0]
target_output = target_output.sum().data.cpu().numpy()
print("\nReal value: ", ' = ' + str(int(target_output[0])))
print("Predicted: ", ' = ' + str(int(output // 1)) + " [" + str(output) + "]")