FLANN read
This commit is contained in:
parent
c4ec88a58e
commit
8aee625101
@ -1,3 +1,6 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
from .dnc import DNC
|
||||
from .sdnc import SDNC
|
||||
from .memory import Memory
|
||||
from .sparse_memory import SparseMemory
|
||||
|
@ -10,22 +10,23 @@ from pyflann import FLANN
|
||||
|
||||
from .util import *
|
||||
|
||||
|
||||
class SparseMemory(nn.Module):
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
input_size,
|
||||
mem_size=512,
|
||||
cell_size=32,
|
||||
read_heads=4,
|
||||
gpu_id=-1,
|
||||
independent_linears=True,
|
||||
sparse_reads=4,
|
||||
num_kdtrees=4,
|
||||
index_checks=32,
|
||||
rebuild_indexes_after=10
|
||||
):
|
||||
super(Memory, self).__init__()
|
||||
self,
|
||||
input_size,
|
||||
mem_size=512,
|
||||
cell_size=32,
|
||||
read_heads=4,
|
||||
gpu_id=-1,
|
||||
independent_linears=True,
|
||||
sparse_reads=4,
|
||||
num_kdtrees=4,
|
||||
index_checks=32,
|
||||
rebuild_indexes_after=10
|
||||
):
|
||||
super(SparseMemory, self).__init__()
|
||||
|
||||
self.mem_size = mem_size
|
||||
self.cell_size = cell_size
|
||||
@ -33,7 +34,7 @@ class SparseMemory(nn.Module):
|
||||
self.gpu_id = gpu_id
|
||||
self.input_size = input_size
|
||||
self.independent_linears = independent_linears
|
||||
self.K = sparse_reads
|
||||
self.K = sparse_reads if self.mem_size > sparse_reads else self.mem_size
|
||||
self.num_kdtrees = num_kdtrees
|
||||
self.index_checks = index_checks
|
||||
self.rebuild_indexes_after = rebuild_indexes_after
|
||||
@ -46,17 +47,11 @@ class SparseMemory(nn.Module):
|
||||
|
||||
if self.independent_linears:
|
||||
self.read_keys_transform = nn.Linear(self.input_size, w * r)
|
||||
self.read_strengths_transform = nn.Linear(self.input_size, r)
|
||||
self.write_key_transform = nn.Linear(self.input_size, w)
|
||||
self.write_strength_transform = nn.Linear(self.input_size, 1)
|
||||
self.erase_vector_transform = nn.Linear(self.input_size, w)
|
||||
self.write_vector_transform = nn.Linear(self.input_size, w)
|
||||
self.free_gates_transform = nn.Linear(self.input_size, r)
|
||||
self.allocation_gate_transform = nn.Linear(self.input_size, 1)
|
||||
self.write_gate_transform = nn.Linear(self.input_size, 1)
|
||||
self.read_modes_transform = nn.Linear(self.input_size, 3 * r)
|
||||
else:
|
||||
self.interface_size = (w * r) + (3 * w) + (5 * r) + 3
|
||||
self.interface_size = (w * r) + (2 * w) + 1
|
||||
self.interface_weights = nn.Linear(self.input_size, self.interface_size)
|
||||
|
||||
self.I = cuda(1 - T.eye(m).unsqueeze(0), gpu_id=self.gpu_id) # (1 * n * n)
|
||||
@ -67,10 +62,10 @@ class SparseMemory(nn.Module):
|
||||
|
||||
if self.rebuild_indexes_after == self.index_reset_ctr or 'dict' not in hidden:
|
||||
self.index_reset_ctr = 0
|
||||
hidden['dict'] = [ FLANN() for x in range(b) ]
|
||||
hidden['dict'] = [ \
|
||||
x.build_index(hidden['sparse'][n], algorithm='kdtree', trees=self.num_kdtrees, checks=self.index_checks)
|
||||
for n,x in enumerate(hidden['dict'])
|
||||
hidden['dict'] = [FLANN() for x in range(b)]
|
||||
[
|
||||
x.build_index(hidden['sparse'][n], algorithm='kdtree', trees=self.num_kdtrees, checks=self.index_checks)
|
||||
for n, x in enumerate(hidden['dict'])
|
||||
]
|
||||
self.index_reset_ctr += 1
|
||||
return hidden
|
||||
@ -82,156 +77,50 @@ class SparseMemory(nn.Module):
|
||||
b = batch_size
|
||||
|
||||
if hidden is None:
|
||||
hx = {
|
||||
hidden = {
|
||||
# warning can be a huge chunk of contiguous memory
|
||||
'sparse': np.zeros((b, m, w)),
|
||||
# 'memory': cuda(T.zeros(b, m, w).fill_(δ), gpu_id=self.gpu_id),
|
||||
'link_matrix': cuda(T.zeros(b, 1, m, m), gpu_id=self.gpu_id),
|
||||
'precedence': cuda(T.zeros(b, 1, m), gpu_id=self.gpu_id),
|
||||
'sparse': np.zeros((b, m, w), dtype=np.float32),
|
||||
'read_weights': cuda(T.zeros(b, r, m).fill_(δ), gpu_id=self.gpu_id),
|
||||
'write_weights': cuda(T.zeros(b, 1, m).fill_(δ), gpu_id=self.gpu_id),
|
||||
'usage_vector': cuda(T.zeros(b, m), gpu_id=self.gpu_id)
|
||||
'write_weights': cuda(T.zeros(b, 1, m).fill_(δ), gpu_id=self.gpu_id)
|
||||
}
|
||||
# Build FLANN randomized k-d tree indexes for each batch
|
||||
hx = rebuild_indexes(hx)
|
||||
hidden = self.rebuild_indexes(hidden)
|
||||
else:
|
||||
# hidden['memory'] = hidden['memory'].clone()
|
||||
hidden['link_matrix'] = hidden['link_matrix'].clone()
|
||||
hidden['precedence'] = hidden['precedence'].clone()
|
||||
hidden['read_weights'] = hidden['read_weights'].clone()
|
||||
hidden['write_weights'] = hidden['write_weights'].clone()
|
||||
hidden['usage_vector'] = hidden['usage_vector'].clone()
|
||||
|
||||
if erase:
|
||||
hidden = self.rebuild_indexes(hidden)
|
||||
hidden['sparse'].fill(0)
|
||||
# hidden['memory'].data.fill_(δ)
|
||||
hidden['link_matrix'].data.zero_()
|
||||
hidden['precedence'].data.zero_()
|
||||
hidden['read_weights'].data.fill_(δ)
|
||||
hidden['write_weights'].data.fill_(δ)
|
||||
hidden['usage_vector'].data.zero_()
|
||||
return hidden
|
||||
|
||||
def get_usage_vector(self, usage, free_gates, read_weights, write_weights):
|
||||
# write_weights = write_weights.detach() # detach from the computation graph
|
||||
usage = usage + (1 - usage) * (1 - T.prod(1 - write_weights, 1))
|
||||
ψ = T.prod(1 - free_gates.unsqueeze(2) * read_weights, 1)
|
||||
return usage * ψ
|
||||
|
||||
def allocate(self, usage, write_gate):
|
||||
# ensure values are not too small prior to cumprod.
|
||||
usage = δ + (1 - δ) * usage
|
||||
batch_size = usage.size(0)
|
||||
# free list
|
||||
sorted_usage, φ = T.topk(usage, self.mem_size, dim=1, largest=False)
|
||||
|
||||
# cumprod with exclusive=True, TODO: unstable territory, revisit this shit
|
||||
# essential for correct scaling of allocation_weights to prevent memory pollution
|
||||
# during write operations
|
||||
# https://discuss.pytorch.org/t/cumprod-exclusive-true-equivalences/2614/8
|
||||
v = var(T.ones(batch_size, 1))
|
||||
if self.gpu_id != -1:
|
||||
v = v.cuda(self.gpu_id)
|
||||
cat_sorted_usage = T.cat((v, sorted_usage), 1)[:, :-1]
|
||||
prod_sorted_usage = fake_cumprod(cat_sorted_usage, self.gpu_id)
|
||||
|
||||
sorted_allocation_weights = (1 - sorted_usage) * prod_sorted_usage.squeeze()
|
||||
|
||||
# construct the reverse sorting index https://stackoverflow.com/questions/2483696/undo-or-reverse-argsort-python
|
||||
_, φ_rev = T.topk(φ, k=self.mem_size, dim=1, largest=False)
|
||||
allocation_weights = sorted_allocation_weights.gather(1, φ.long())
|
||||
|
||||
# update usage after allocating
|
||||
# usage += ((1 - usage) * write_gate * allocation_weights)
|
||||
return allocation_weights.unsqueeze(1), usage
|
||||
|
||||
def write_weighting(self, write_content_weights, allocation_weights, write_gate, allocation_gate):
|
||||
ag = allocation_gate.unsqueeze(-1)
|
||||
wg = write_gate.unsqueeze(-1)
|
||||
|
||||
return wg * (ag * allocation_weights + (1 - ag) * write_content_weights)
|
||||
|
||||
def get_link_matrix(self, link_matrix, write_weights, precedence):
|
||||
precedence = precedence.unsqueeze(2)
|
||||
write_weights_i = write_weights.unsqueeze(3)
|
||||
write_weights_j = write_weights.unsqueeze(2)
|
||||
|
||||
prev_scale = 1 - write_weights_i - write_weights_j
|
||||
new_link_matrix = write_weights_i * precedence
|
||||
|
||||
link_matrix = prev_scale * link_matrix + new_link_matrix
|
||||
# elaborate trick to delete diag elems
|
||||
return self.I.expand_as(link_matrix) * link_matrix
|
||||
|
||||
def update_precedence(self, precedence, write_weights):
|
||||
return (1 - T.sum(write_weights, 2, keepdim=True)) * precedence + write_weights
|
||||
|
||||
def write(self, write_key, write_vector, write_gate, hidden):
|
||||
write_weights = write_gate * ( \
|
||||
interpolation_gate * hidden['read_weights'] + \
|
||||
(1 - interpolation_gate)*cuda(T.ones(hidden['read_weights'].size()), gpu_id=self.gpu_id) )
|
||||
|
||||
# write_weights * write_vector
|
||||
|
||||
# get current usage
|
||||
hidden['usage_vector'] = self.get_usage_vector(
|
||||
hidden['usage_vector'],
|
||||
free_gates,
|
||||
hidden['read_weights'],
|
||||
hidden['write_weights']
|
||||
)
|
||||
|
||||
# lookup memory with write_key and write_strength
|
||||
write_content_weights = self.content_weightings(hidden['memory'], write_key, write_strength)
|
||||
|
||||
# get memory allocation
|
||||
alloc, _ = self.allocate(
|
||||
hidden['usage_vector'],
|
||||
allocation_gate * write_gate
|
||||
)
|
||||
|
||||
# get write weightings
|
||||
hidden['write_weights'] = self.write_weighting(
|
||||
write_content_weights,
|
||||
alloc,
|
||||
write_gate,
|
||||
allocation_gate
|
||||
)
|
||||
|
||||
weighted_resets = hidden['write_weights'].unsqueeze(3) * erase_vector.unsqueeze(2)
|
||||
reset_gate = T.prod(1 - weighted_resets, 1)
|
||||
# Update memory
|
||||
hidden['memory'] = hidden['memory'] * reset_gate
|
||||
|
||||
hidden['memory'] = hidden['memory'] + \
|
||||
T.bmm(hidden['write_weights'].transpose(1, 2), write_vector)
|
||||
|
||||
# update link_matrix
|
||||
hidden['link_matrix'] = self.get_link_matrix(
|
||||
hidden['link_matrix'],
|
||||
hidden['write_weights'],
|
||||
hidden['precedence']
|
||||
)
|
||||
hidden['precedence'] = self.update_precedence(hidden['precedence'], hidden['write_weights'])
|
||||
# write_weights = write_gate * ( \
|
||||
# interpolation_gate * hidden['read_weights'] + \
|
||||
# (1 - interpolation_gate)*cuda(T.ones(hidden['read_weights'].size()), gpu_id=self.gpu_id) )
|
||||
|
||||
return hidden
|
||||
|
||||
def read_from_sparse_memory(self, sparse, dict, keys):
|
||||
ks = keys.data.cpu().numpy()
|
||||
keys = keys.data.cpu().numpy()
|
||||
read_vectors = []
|
||||
positions = []
|
||||
read_weights = []
|
||||
|
||||
# search nearest neighbor for each key
|
||||
for k in range(ks.shape[1]):
|
||||
for key in range(keys.shape[1]):
|
||||
print(key, keys.shape)
|
||||
# search for K nearest neighbours given key for each batch
|
||||
search = [ h.nn_index(k[n], num_neighbours=self.K) for n,h in enumerate(dict) ]
|
||||
search = [h.nn_index(keys[b, key, :], num_neighbors=self.K) for b, h in enumerate(dict)]
|
||||
|
||||
distances = [ m[1] for m in search ]
|
||||
v = [ cudavec(sparse[m[0]], gpu_id=self.gpu_id) for m in search ]
|
||||
distances = [m[1] for m in search]
|
||||
v = [cudavec(sparse[m[0]], gpu_id=self.gpu_id) for m in search]
|
||||
v = v
|
||||
p = [ m[0] for m in search ]
|
||||
p = [m[0] for m in search]
|
||||
|
||||
read_vectors.append(T.stack(v, 0).contiguous())
|
||||
positions.append(p)
|
||||
@ -244,7 +133,8 @@ class SparseMemory(nn.Module):
|
||||
|
||||
def read(self, read_keys, hidden):
|
||||
# sparse read
|
||||
read_vectors, positions, read_weights = self.read_from_sparse_memory(hidden['sparse'], hidden['dict'], read_keys)
|
||||
read_vectors, positions, read_weights = \
|
||||
self.read_from_sparse_memory(hidden['sparse'], hidden['dict'], read_keys)
|
||||
hidden['read_positions'] = positions
|
||||
hidden['read_weights'] = read_weights
|
||||
|
||||
@ -263,16 +153,8 @@ class SparseMemory(nn.Module):
|
||||
read_keys = self.read_keys_transform(ξ).view(b, r, w)
|
||||
# write key (b * 1 * w)
|
||||
write_key = self.write_key_transform(ξ).view(b, 1, w)
|
||||
# write strength (b * 1)
|
||||
write_strength = self.write_strength_transform(ξ).view(b, 1)
|
||||
# erase vector (b * 1 * w)
|
||||
erase_vector = F.sigmoid(self.erase_vector_transform(ξ).view(b, 1, w))
|
||||
# write vector (b * 1 * w)
|
||||
write_vector = self.write_vector_transform(ξ).view(b, 1, w)
|
||||
# r free gates (b * r)
|
||||
free_gates = F.sigmoid(self.free_gates_transform(ξ).view(b, r))
|
||||
# allocation gate (b * 1)
|
||||
allocation_gate = F.sigmoid(self.allocation_gate_transform(ξ).view(b, 1))
|
||||
# write gate (b * 1)
|
||||
write_gate = F.sigmoid(self.write_gate_transform(ξ).view(b, 1))
|
||||
else:
|
||||
@ -280,20 +162,11 @@ class SparseMemory(nn.Module):
|
||||
# r read keys (b * w * r)
|
||||
read_keys = ξ[:, :r * w].contiguous().view(b, r, w)
|
||||
# write key (b * w * 1)
|
||||
write_key = ξ[:, r * w + r:r * w + r + w].contiguous().view(b, 1, w)
|
||||
# write strength (b * 1)
|
||||
write_strength = 1 + F.relu(ξ[:, r * w + r + w].contiguous()).view(b, 1)
|
||||
# erase vector (b * w)
|
||||
erase_vector = F.sigmoid(ξ[:, r * w + r + w + 1: r * w + r + 2 * w + 1].contiguous().view(b, 1, w))
|
||||
write_key = ξ[:, r * w:r * w + w].contiguous().view(b, 1, w)
|
||||
# write vector (b * w)
|
||||
write_vector = ξ[:, r * w + r + 2 * w + 1: r * w + r + 3 * w + 1].contiguous().view(b, 1, w)
|
||||
# r free gates (b * r)
|
||||
free_gates = F.sigmoid(ξ[:, r * w + r + 3 * w + 1: r * w + 2 * r + 3 * w + 1].contiguous().view(b, r))
|
||||
# allocation gate (b * 1)
|
||||
allocation_gate = F.sigmoid(ξ[:, r * w + 2 * r + 3 * w + 1].contiguous().unsqueeze(1).view(b, 1))
|
||||
write_vector = ξ[:, r * w + w: r * w + 2 * w].contiguous().view(b, 1, w)
|
||||
# write gate (b * 1)
|
||||
write_gate = F.sigmoid(ξ[:, r * w + 2 * r + 3 * w + 2].contiguous()).unsqueeze(1).view(b, 1)
|
||||
write_gate = F.sigmoid(ξ[:, -1].contiguous()).unsqueeze(1).view(b, 1)
|
||||
|
||||
hidden = self.write(write_key, write_vector, erase_vector, free_gates,
|
||||
read_strengths, write_strength, write_gate, allocation_gate, hidden)
|
||||
hidden = self.write(write_key, write_vector, write_gate, hidden)
|
||||
return self.read(read_keys, hidden)
|
||||
|
Loading…
Reference in New Issue
Block a user