Modify copy task and readme
This commit is contained in:
parent
264bdfb2f0
commit
60f2026d80
110
README.md
110
README.md
@ -1,4 +1,9 @@
|
||||
# Differentiable Neural Computers and Sparse Differentiable Neural Computers, for Pytorch
|
||||
# Differentiable Neural Computers and family, for Pytorch
|
||||
|
||||
Includes:
|
||||
1. Differentiable Neural Computers (DNC)
|
||||
2. Sparse Access Memory (SAM)
|
||||
3. Sparse Differentiable Neural Computers (SDNC)
|
||||
|
||||
<!-- START doctoc generated TOC please keep comment here to allow auto update -->
|
||||
<!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->
|
||||
@ -22,7 +27,7 @@
|
||||
[![Build Status](https://travis-ci.org/ixaxaar/pytorch-dnc.svg?branch=master)](https://travis-ci.org/ixaxaar/pytorch-dnc) [![PyPI version](https://badge.fury.io/py/dnc.svg)](https://badge.fury.io/py/dnc)
|
||||
|
||||
This is an implementation of [Differentiable Neural Computers](http://people.idsia.ch/~rupesh/rnnsymposium2016/slides/graves.pdf), described in the paper [Hybrid computing using a neural network with dynamic external memory, Graves et al.](https://www.nature.com/articles/nature20101)
|
||||
and the Sparse version of the DNC (the SDNC) described in [Scaling Memory-Augmented Neural Networks with Sparse Reads and Writes](http://papers.nips.cc/paper/6298-scaling-memory-augmented-neural-networks-with-sparse-reads-and-writes.pdf).
|
||||
and Sparse DNCs (SDNCs) and Sparse Access Memory (SAM) described in [Scaling Memory-Augmented Neural Networks with Sparse Reads and Writes](http://papers.nips.cc/paper/6298-scaling-memory-augmented-neural-networks-with-sparse-reads-and-writes.pdf).
|
||||
|
||||
## Install
|
||||
|
||||
@ -252,6 +257,107 @@ Memory vectors returned by forward pass (`np.ndarray`):
|
||||
| `debug_memory['write_weights']` | layer * time | nr_cells
|
||||
| `debug_memory['usage']` | layer * time | nr_cells
|
||||
|
||||
### SAM
|
||||
|
||||
**Constructor Parameters**:
|
||||
|
||||
Following are the constructor parameters:
|
||||
|
||||
| Argument | Default | Description |
|
||||
| --- | --- | --- |
|
||||
| input_size | `None` | Size of the input vectors |
|
||||
| hidden_size | `None` | Size of hidden units |
|
||||
| rnn_type | `'lstm'` | Type of recurrent cells used in the controller |
|
||||
| num_layers | `1` | Number of layers of recurrent units in the controller |
|
||||
| num_hidden_layers | `2` | Number of hidden layers per layer of the controller |
|
||||
| bias | `True` | Bias |
|
||||
| batch_first | `True` | Whether data is fed batch first |
|
||||
| dropout | `0` | Dropout between layers in the controller |
|
||||
| bidirectional | `False` | If the controller is bidirectional (Not yet implemented |
|
||||
| nr_cells | `5000` | Number of memory cells |
|
||||
| read_heads | `4` | Number of read heads |
|
||||
| sparse_reads | `4` | Number of sparse memory reads per read head |
|
||||
| cell_size | `10` | Size of each memory cell |
|
||||
| nonlinearity | `'tanh'` | If using 'rnn' as `rnn_type`, non-linearity of the RNNs |
|
||||
| gpu_id | `-1` | ID of the GPU, -1 for CPU |
|
||||
| independent_linears | `False` | Whether to use independent linear units to derive interface vector |
|
||||
| share_memory | `True` | Whether to share memory between controller layers |
|
||||
|
||||
Following are the forward pass parameters:
|
||||
|
||||
| Argument | Default | Description |
|
||||
| --- | --- | --- |
|
||||
| input | - | The input vector `(B*T*X)` or `(T*B*X)` |
|
||||
| hidden | `(None,None,None)` | Hidden states `(controller hidden, memory hidden, read vectors)` |
|
||||
| reset_experience | `False` | Whether to reset memory |
|
||||
| pass_through_memory | `True` | Whether to pass through memory |
|
||||
|
||||
|
||||
#### Example usage:
|
||||
|
||||
```python
|
||||
from dnc import SAM
|
||||
|
||||
rnn = SAM(
|
||||
input_size=64,
|
||||
hidden_size=128,
|
||||
rnn_type='lstm',
|
||||
num_layers=4,
|
||||
nr_cells=100,
|
||||
cell_size=32,
|
||||
read_heads=4,
|
||||
sparse_reads=4,
|
||||
batch_first=True,
|
||||
gpu_id=0
|
||||
)
|
||||
|
||||
(controller_hidden, memory, read_vectors) = (None, None, None)
|
||||
|
||||
output, (controller_hidden, memory, read_vectors) = \
|
||||
rnn(torch.randn(10, 4, 64), (controller_hidden, memory, read_vectors, reset_experience=True))
|
||||
```
|
||||
|
||||
|
||||
#### Debugging:
|
||||
|
||||
The `debug` option causes the network to return its memory hidden vectors (numpy `ndarray`s) for the first batch each forward step.
|
||||
These vectors can be analyzed or visualized, using visdom for example.
|
||||
|
||||
```python
|
||||
from dnc import SAM
|
||||
|
||||
rnn = SAM(
|
||||
input_size=64,
|
||||
hidden_size=128,
|
||||
rnn_type='lstm',
|
||||
num_layers=4,
|
||||
nr_cells=100,
|
||||
cell_size=32,
|
||||
read_heads=4,
|
||||
batch_first=True,
|
||||
sparse_reads=4,
|
||||
gpu_id=0,
|
||||
debug=True
|
||||
)
|
||||
|
||||
(controller_hidden, memory, read_vectors) = (None, None, None)
|
||||
|
||||
output, (controller_hidden, memory, read_vectors), debug_memory = \
|
||||
rnn(torch.randn(10, 4, 64), (controller_hidden, memory, read_vectors, reset_experience=True))
|
||||
```
|
||||
|
||||
Memory vectors returned by forward pass (`np.ndarray`):
|
||||
|
||||
| Key | Y axis (dimensions) | X axis (dimensions) |
|
||||
| --- | --- | --- |
|
||||
| `debug_memory['memory']` | layer * time | nr_cells * cell_size
|
||||
| `debug_memory['visible_memory']` | layer * time | sparse_reads+2*temporal_reads+1 * nr_cells
|
||||
| `debug_memory['read_positions']` | layer * time | sparse_reads+2*temporal_reads+1
|
||||
| `debug_memory['read_weights']` | layer * time | read_heads * nr_cells
|
||||
| `debug_memory['write_weights']` | layer * time | nr_cells
|
||||
| `debug_memory['usage']` | layer * time | nr_cells
|
||||
|
||||
|
||||
## Example copy task
|
||||
|
||||
The copy task, as descibed in the original paper, is included in the repo.
|
||||
|
@ -24,6 +24,7 @@ from torch.nn.utils import clip_grad_norm
|
||||
|
||||
from dnc.dnc import DNC
|
||||
from dnc.sdnc import SDNC
|
||||
from dnc.sam import SAM
|
||||
from dnc.util import *
|
||||
|
||||
parser = argparse.ArgumentParser(description='PyTorch Differentiable Neural Computer')
|
||||
@ -31,7 +32,7 @@ parser.add_argument('-input_size', type=int, default=6, help='dimension of input
|
||||
parser.add_argument('-rnn_type', type=str, default='lstm', help='type of recurrent cells to use for the controller')
|
||||
parser.add_argument('-nhid', type=int, default=64, help='number of hidden units of the inner nn')
|
||||
parser.add_argument('-dropout', type=float, default=0, help='controller dropout')
|
||||
parser.add_argument('-memory_type', type=str, default='dnc', help='dense or sparse memory')
|
||||
parser.add_argument('-memory_type', type=str, default='dnc', help='dense or sparse memory: dnc | sdnc | sam')
|
||||
|
||||
parser.add_argument('-nlayer', type=int, default=1, help='number of layers')
|
||||
parser.add_argument('-nhlayer', type=int, default=2, help='number of hidden layers')
|
||||
@ -55,6 +56,7 @@ parser.add_argument('-log-interval', type=int, default=200, metavar='N', help='r
|
||||
parser.add_argument('-iterations', type=int, default=100000, metavar='N', help='total number of iteration')
|
||||
parser.add_argument('-summarize_freq', type=int, default=100, metavar='N', help='summarize frequency')
|
||||
parser.add_argument('-check_freq', type=int, default=100, metavar='N', help='check point frequency')
|
||||
parser.add_argument('-visdom', action='store_true', help='plot memory content on visdom per -summarize_freq steps')
|
||||
|
||||
args = parser.parse_args()
|
||||
print(args)
|
||||
@ -129,7 +131,7 @@ if __name__ == '__main__':
|
||||
cell_size=mem_size,
|
||||
read_heads=read_heads,
|
||||
gpu_id=args.cuda,
|
||||
debug=True,
|
||||
debug=args.visdom,
|
||||
batch_first=True,
|
||||
independent_linears=True
|
||||
)
|
||||
@ -147,7 +149,24 @@ if __name__ == '__main__':
|
||||
temporal_reads=args.temporal_reads,
|
||||
read_heads=args.read_heads,
|
||||
gpu_id=args.cuda,
|
||||
debug=False,
|
||||
debug=args.visdom,
|
||||
batch_first=True,
|
||||
independent_linears=False
|
||||
)
|
||||
elif args.memory_type == 'sam':
|
||||
rnn = SAM(
|
||||
input_size=args.input_size,
|
||||
hidden_size=args.nhid,
|
||||
rnn_type=args.rnn_type,
|
||||
num_layers=args.nlayer,
|
||||
num_hidden_layers=args.nhlayer,
|
||||
dropout=args.dropout,
|
||||
nr_cells=mem_slot,
|
||||
cell_size=mem_size,
|
||||
sparse_reads=args.sparse_reads,
|
||||
read_heads=args.read_heads,
|
||||
gpu_id=args.cuda,
|
||||
debug=args.visdom,
|
||||
batch_first=True,
|
||||
independent_linears=False
|
||||
)
|
||||
@ -252,7 +271,7 @@ if __name__ == '__main__':
|
||||
xlabel='mem_slot'
|
||||
)
|
||||
)
|
||||
else:
|
||||
elif args.memory_type == 'sdnc':
|
||||
viz.heatmap(
|
||||
v['link_matrix'][-1].reshape(args.mem_slot, -1),
|
||||
opts=dict(
|
||||
@ -275,16 +294,17 @@ if __name__ == '__main__':
|
||||
)
|
||||
)
|
||||
|
||||
viz.heatmap(
|
||||
v['precedence'],
|
||||
opts=dict(
|
||||
xtickstep=10,
|
||||
ytickstep=2,
|
||||
title='Precedence, t: ' + str(epoch) + ', loss: ' + str(loss),
|
||||
ylabel='layer * time',
|
||||
xlabel='mem_slot'
|
||||
)
|
||||
)
|
||||
elif args.memory_type == 'sdnc' or args.memory_type == 'dnc':
|
||||
viz.heatmap(
|
||||
v['precedence'],
|
||||
opts=dict(
|
||||
xtickstep=10,
|
||||
ytickstep=2,
|
||||
title='Precedence, t: ' + str(epoch) + ', loss: ' + str(loss),
|
||||
ylabel='layer * time',
|
||||
xlabel='mem_slot'
|
||||
)
|
||||
)
|
||||
|
||||
if args.memory_type == 'sdnc':
|
||||
viz.heatmap(
|
||||
|
Loading…
Reference in New Issue
Block a user