Modify copy task and readme

This commit is contained in:
ixaxaar 2017-12-18 12:38:45 +05:30
parent 264bdfb2f0
commit 60f2026d80
2 changed files with 142 additions and 16 deletions

110
README.md
View File

@ -1,4 +1,9 @@
# Differentiable Neural Computers and Sparse Differentiable Neural Computers, for Pytorch
# Differentiable Neural Computers and family, for Pytorch
Includes:
1. Differentiable Neural Computers (DNC)
2. Sparse Access Memory (SAM)
3. Sparse Differentiable Neural Computers (SDNC)
<!-- START doctoc generated TOC please keep comment here to allow auto update -->
<!-- DON'T EDIT THIS SECTION, INSTEAD RE-RUN doctoc TO UPDATE -->
@ -22,7 +27,7 @@
[![Build Status](https://travis-ci.org/ixaxaar/pytorch-dnc.svg?branch=master)](https://travis-ci.org/ixaxaar/pytorch-dnc) [![PyPI version](https://badge.fury.io/py/dnc.svg)](https://badge.fury.io/py/dnc)
This is an implementation of [Differentiable Neural Computers](http://people.idsia.ch/~rupesh/rnnsymposium2016/slides/graves.pdf), described in the paper [Hybrid computing using a neural network with dynamic external memory, Graves et al.](https://www.nature.com/articles/nature20101)
and the Sparse version of the DNC (the SDNC) described in [Scaling Memory-Augmented Neural Networks with Sparse Reads and Writes](http://papers.nips.cc/paper/6298-scaling-memory-augmented-neural-networks-with-sparse-reads-and-writes.pdf).
and Sparse DNCs (SDNCs) and Sparse Access Memory (SAM) described in [Scaling Memory-Augmented Neural Networks with Sparse Reads and Writes](http://papers.nips.cc/paper/6298-scaling-memory-augmented-neural-networks-with-sparse-reads-and-writes.pdf).
## Install
@ -252,6 +257,107 @@ Memory vectors returned by forward pass (`np.ndarray`):
| `debug_memory['write_weights']` | layer * time | nr_cells
| `debug_memory['usage']` | layer * time | nr_cells
### SAM
**Constructor Parameters**:
Following are the constructor parameters:
| Argument | Default | Description |
| --- | --- | --- |
| input_size | `None` | Size of the input vectors |
| hidden_size | `None` | Size of hidden units |
| rnn_type | `'lstm'` | Type of recurrent cells used in the controller |
| num_layers | `1` | Number of layers of recurrent units in the controller |
| num_hidden_layers | `2` | Number of hidden layers per layer of the controller |
| bias | `True` | Bias |
| batch_first | `True` | Whether data is fed batch first |
| dropout | `0` | Dropout between layers in the controller |
| bidirectional | `False` | If the controller is bidirectional (Not yet implemented |
| nr_cells | `5000` | Number of memory cells |
| read_heads | `4` | Number of read heads |
| sparse_reads | `4` | Number of sparse memory reads per read head |
| cell_size | `10` | Size of each memory cell |
| nonlinearity | `'tanh'` | If using 'rnn' as `rnn_type`, non-linearity of the RNNs |
| gpu_id | `-1` | ID of the GPU, -1 for CPU |
| independent_linears | `False` | Whether to use independent linear units to derive interface vector |
| share_memory | `True` | Whether to share memory between controller layers |
Following are the forward pass parameters:
| Argument | Default | Description |
| --- | --- | --- |
| input | - | The input vector `(B*T*X)` or `(T*B*X)` |
| hidden | `(None,None,None)` | Hidden states `(controller hidden, memory hidden, read vectors)` |
| reset_experience | `False` | Whether to reset memory |
| pass_through_memory | `True` | Whether to pass through memory |
#### Example usage:
```python
from dnc import SAM
rnn = SAM(
input_size=64,
hidden_size=128,
rnn_type='lstm',
num_layers=4,
nr_cells=100,
cell_size=32,
read_heads=4,
sparse_reads=4,
batch_first=True,
gpu_id=0
)
(controller_hidden, memory, read_vectors) = (None, None, None)
output, (controller_hidden, memory, read_vectors) = \
rnn(torch.randn(10, 4, 64), (controller_hidden, memory, read_vectors, reset_experience=True))
```
#### Debugging:
The `debug` option causes the network to return its memory hidden vectors (numpy `ndarray`s) for the first batch each forward step.
These vectors can be analyzed or visualized, using visdom for example.
```python
from dnc import SAM
rnn = SAM(
input_size=64,
hidden_size=128,
rnn_type='lstm',
num_layers=4,
nr_cells=100,
cell_size=32,
read_heads=4,
batch_first=True,
sparse_reads=4,
gpu_id=0,
debug=True
)
(controller_hidden, memory, read_vectors) = (None, None, None)
output, (controller_hidden, memory, read_vectors), debug_memory = \
rnn(torch.randn(10, 4, 64), (controller_hidden, memory, read_vectors, reset_experience=True))
```
Memory vectors returned by forward pass (`np.ndarray`):
| Key | Y axis (dimensions) | X axis (dimensions) |
| --- | --- | --- |
| `debug_memory['memory']` | layer * time | nr_cells * cell_size
| `debug_memory['visible_memory']` | layer * time | sparse_reads+2*temporal_reads+1 * nr_cells
| `debug_memory['read_positions']` | layer * time | sparse_reads+2*temporal_reads+1
| `debug_memory['read_weights']` | layer * time | read_heads * nr_cells
| `debug_memory['write_weights']` | layer * time | nr_cells
| `debug_memory['usage']` | layer * time | nr_cells
## Example copy task
The copy task, as descibed in the original paper, is included in the repo.

View File

@ -24,6 +24,7 @@ from torch.nn.utils import clip_grad_norm
from dnc.dnc import DNC
from dnc.sdnc import SDNC
from dnc.sam import SAM
from dnc.util import *
parser = argparse.ArgumentParser(description='PyTorch Differentiable Neural Computer')
@ -31,7 +32,7 @@ parser.add_argument('-input_size', type=int, default=6, help='dimension of input
parser.add_argument('-rnn_type', type=str, default='lstm', help='type of recurrent cells to use for the controller')
parser.add_argument('-nhid', type=int, default=64, help='number of hidden units of the inner nn')
parser.add_argument('-dropout', type=float, default=0, help='controller dropout')
parser.add_argument('-memory_type', type=str, default='dnc', help='dense or sparse memory')
parser.add_argument('-memory_type', type=str, default='dnc', help='dense or sparse memory: dnc | sdnc | sam')
parser.add_argument('-nlayer', type=int, default=1, help='number of layers')
parser.add_argument('-nhlayer', type=int, default=2, help='number of hidden layers')
@ -55,6 +56,7 @@ parser.add_argument('-log-interval', type=int, default=200, metavar='N', help='r
parser.add_argument('-iterations', type=int, default=100000, metavar='N', help='total number of iteration')
parser.add_argument('-summarize_freq', type=int, default=100, metavar='N', help='summarize frequency')
parser.add_argument('-check_freq', type=int, default=100, metavar='N', help='check point frequency')
parser.add_argument('-visdom', action='store_true', help='plot memory content on visdom per -summarize_freq steps')
args = parser.parse_args()
print(args)
@ -129,7 +131,7 @@ if __name__ == '__main__':
cell_size=mem_size,
read_heads=read_heads,
gpu_id=args.cuda,
debug=True,
debug=args.visdom,
batch_first=True,
independent_linears=True
)
@ -147,7 +149,24 @@ if __name__ == '__main__':
temporal_reads=args.temporal_reads,
read_heads=args.read_heads,
gpu_id=args.cuda,
debug=False,
debug=args.visdom,
batch_first=True,
independent_linears=False
)
elif args.memory_type == 'sam':
rnn = SAM(
input_size=args.input_size,
hidden_size=args.nhid,
rnn_type=args.rnn_type,
num_layers=args.nlayer,
num_hidden_layers=args.nhlayer,
dropout=args.dropout,
nr_cells=mem_slot,
cell_size=mem_size,
sparse_reads=args.sparse_reads,
read_heads=args.read_heads,
gpu_id=args.cuda,
debug=args.visdom,
batch_first=True,
independent_linears=False
)
@ -252,7 +271,7 @@ if __name__ == '__main__':
xlabel='mem_slot'
)
)
else:
elif args.memory_type == 'sdnc':
viz.heatmap(
v['link_matrix'][-1].reshape(args.mem_slot, -1),
opts=dict(
@ -275,16 +294,17 @@ if __name__ == '__main__':
)
)
viz.heatmap(
v['precedence'],
opts=dict(
xtickstep=10,
ytickstep=2,
title='Precedence, t: ' + str(epoch) + ', loss: ' + str(loss),
ylabel='layer * time',
xlabel='mem_slot'
)
)
elif args.memory_type == 'sdnc' or args.memory_type == 'dnc':
viz.heatmap(
v['precedence'],
opts=dict(
xtickstep=10,
ytickstep=2,
title='Precedence, t: ' + str(epoch) + ', loss: ' + str(loss),
ylabel='layer * time',
xlabel='mem_slot'
)
)
if args.memory_type == 'sdnc':
viz.heatmap(