Sparse reads barebones

This commit is contained in:
ixaxaar 2017-11-27 15:58:14 +05:30
parent 41a96c29d3
commit 00b561e4da
2 changed files with 124 additions and 125 deletions

View File

@ -18,7 +18,6 @@ class SparseMemory(nn.Module):
input_size,
mem_size=512,
cell_size=32,
read_heads=4,
gpu_id=-1,
independent_linears=True,
sparse_reads=4,
@ -30,7 +29,6 @@ class SparseMemory(nn.Module):
self.mem_size = mem_size
self.cell_size = cell_size
self.read_heads = read_heads
self.gpu_id = gpu_id
self.input_size = input_size
self.independent_linears = independent_linears
@ -43,15 +41,15 @@ class SparseMemory(nn.Module):
m = self.mem_size
w = self.cell_size
r = self.read_heads
r = self.K
if self.independent_linears:
self.read_keys_transform = nn.Linear(self.input_size, w * r)
self.read_keys_transform = nn.Linear(self.input_size, w)
self.write_key_transform = nn.Linear(self.input_size, w)
self.write_vector_transform = nn.Linear(self.input_size, w)
self.write_gate_transform = nn.Linear(self.input_size, 1)
else:
self.interface_size = (w * r) + (2 * w) + 1
self.interface_size = (3 * w) + 1
self.interface_weights = nn.Linear(self.input_size, self.interface_size)
self.I = cuda(1 - T.eye(m).unsqueeze(0), gpu_id=self.gpu_id) # (1 * n * n)
@ -73,14 +71,13 @@ class SparseMemory(nn.Module):
def reset(self, batch_size=1, hidden=None, erase=True):
m = self.mem_size
w = self.cell_size
r = self.read_heads
b = batch_size
if hidden is None:
hidden = {
# warning can be a huge chunk of contiguous memory
'sparse': np.zeros((b, m, w), dtype=np.float32),
'read_weights': cuda(T.zeros(b, r, m).fill_(δ), gpu_id=self.gpu_id),
'read_weights': cuda(T.zeros(b, 1, m).fill_(δ), gpu_id=self.gpu_id),
'write_weights': cuda(T.zeros(b, 1, m).fill_(δ), gpu_id=self.gpu_id)
}
# Build FLANN randomized k-d tree indexes for each batch
@ -108,25 +105,27 @@ class SparseMemory(nn.Module):
def read_from_sparse_memory(self, sparse, dict, keys):
keys = keys.data.cpu().numpy()
read_vectors = []
positions = []
read_positions = []
read_weights = []
# search nearest neighbor for each key
for key in range(keys.shape[1]):
print(key, keys.shape)
# search for K nearest neighbours given key for each batch
search = [h.nn_index(keys[b, key, :], num_neighbors=self.K) for b, h in enumerate(dict)]
for batch in range(keys.shape[0]):
d = []; rv = []; p = []
distances = [m[1] for m in search]
v = [cudavec(sparse[m[0]], gpu_id=self.gpu_id) for m in search]
v = v
p = [m[0] for m in search]
# search nearest neighbor for each key
for key in range(keys.shape[1]):
positions, distances = dict[batch].nn_index(keys[batch, key, :], num_neighbors=self.K)
distances = distances / max(distances)
positions = positions[0] if self.K > 1 else positions
read_vector = [sparse[batch, p] for p in list(positions)]
read_vectors.append(T.stack(v, 0).contiguous())
positions.append(p)
read_weights.append(distances / max(distances))
d.append(distances)
rv.append(read_vector)
p.append(positions)
read_weights.append(d)
read_vectors.append(rv)
read_positions.append(p)
read_vectors = T.stack(read_vectors, 0)
read_vectors = cudavec(np.array(read_vectors), gpu_id=self.gpu_id)
read_weights = cudavec(np.array(read_weights), gpu_id=self.gpu_id)
return read_vectors, positions, read_weights
@ -145,12 +144,12 @@ class SparseMemory(nn.Module):
# ξ = ξ.detach()
m = self.mem_size
w = self.cell_size
r = self.read_heads
r = self.K
b = ξ.size()[0]
if self.independent_linears:
# r read keys (b * r * w)
read_keys = self.read_keys_transform(ξ).view(b, r, w)
read_keys = self.read_keys_transform(ξ).view(b, 1, w)
# write key (b * 1 * w)
write_key = self.write_key_transform(ξ).view(b, 1, w)
# write vector (b * 1 * w)
@ -160,11 +159,11 @@ class SparseMemory(nn.Module):
else:
ξ = self.interface_weights(ξ)
# r read keys (b * w * r)
read_keys = ξ[:, :r * w].contiguous().view(b, r, w)
read_keys = ξ[:, :w].contiguous().view(b, 1, w)
# write key (b * w * 1)
write_key = ξ[:, r * w:r * w + w].contiguous().view(b, 1, w)
write_key = ξ[:, w: 2*w].contiguous().view(b, 1, w)
# write vector (b * w)
write_vector = ξ[:, r * w + w: r * w + 2 * w].contiguous().view(b, 1, w)
write_vector = ξ[:, 2*w: 3*w].contiguous().view(b, 1, w)
# write gate (b * 1)
write_gate = F.sigmoid(ξ[:, -1].contiguous()).unsqueeze(1).view(b, 1)

View File

@ -33,7 +33,7 @@ def test_rnn_1():
dropout = 0
nr_cells = 1
cell_size = 1
read_heads = 1
sparse_reads = 1
gpu_id = -1
debug = True
lr = 0.001
@ -52,7 +52,7 @@ def test_rnn_1():
dropout=dropout,
nr_cells=nr_cells,
cell_size=cell_size,
read_heads=read_heads,
sparse_reads=sparse_reads,
gpu_id=gpu_id,
debug=debug
)
@ -78,119 +78,119 @@ def test_rnn_1():
assert rv.size() == T.Size([10, 1])
# def test_rnn_n():
# T.manual_seed(1111)
def test_rnn_n():
T.manual_seed(1111)
# input_size = 100
# hidden_size = 100
# rnn_type = 'lstm'
# num_layers = 3
# num_hidden_layers = 5
# dropout = 0.2
# nr_cells = 12
# cell_size = 17
# read_heads = 3
# gpu_id = -1
# debug = True
# lr = 0.001
# sequence_max_length = 10
# batch_size = 10
# cuda = gpu_id
# clip = 20
# length = 13
input_size = 100
hidden_size = 100
rnn_type = 'lstm'
num_layers = 3
num_hidden_layers = 5
dropout = 0.2
nr_cells = 12
cell_size = 17
sparse_reads = 3
gpu_id = -1
debug = True
lr = 0.001
sequence_max_length = 10
batch_size = 10
cuda = gpu_id
clip = 20
length = 13
# rnn = DNC(
# input_size=input_size,
# hidden_size=hidden_size,
# rnn_type=rnn_type,
# num_layers=num_layers,
# num_hidden_layers=num_hidden_layers,
# dropout=dropout,
# nr_cells=nr_cells,
# cell_size=cell_size,
# read_heads=read_heads,
# gpu_id=gpu_id,
# debug=debug
# )
rnn = SDNC(
input_size=input_size,
hidden_size=hidden_size,
rnn_type=rnn_type,
num_layers=num_layers,
num_hidden_layers=num_hidden_layers,
dropout=dropout,
nr_cells=nr_cells,
cell_size=cell_size,
sparse_reads=sparse_reads,
gpu_id=gpu_id,
debug=debug
)
# optimizer = optim.Adam(rnn.parameters(), lr=lr)
# optimizer.zero_grad()
optimizer = optim.Adam(rnn.parameters(), lr=lr)
optimizer.zero_grad()
# input_data, target_output = generate_data(batch_size, length, input_size, cuda)
# target_output = target_output.transpose(0, 1).contiguous()
input_data, target_output = generate_data(batch_size, length, input_size, cuda)
target_output = target_output.transpose(0, 1).contiguous()
# output, (chx, mhx, rv), v = rnn(input_data, None)
# output = output.transpose(0, 1)
output, (chx, mhx, rv), v = rnn(input_data, None)
output = output.transpose(0, 1)
# loss = criterion((output), target_output)
# loss.backward()
loss = criterion((output), target_output)
loss.backward()
# T.nn.utils.clip_grad_norm(rnn.parameters(), clip)
# optimizer.step()
T.nn.utils.clip_grad_norm(rnn.parameters(), clip)
optimizer.step()
# assert target_output.size() == T.Size([27, 10, 100])
# assert chx[0][0].size() == T.Size([num_hidden_layers,10,100])
# assert mhx['memory'].size() == T.Size([10,12,17])
# assert rv.size() == T.Size([10, 51])
assert target_output.size() == T.Size([27, 10, 100])
assert chx[0][0].size() == T.Size([num_hidden_layers,10,100])
# assert mhx['memory'].size() == T.Size([10,12,17])
assert rv.size() == T.Size([10, 51])
# def test_rnn_no_memory_pass():
# T.manual_seed(1111)
def test_rnn_no_memory_pass():
T.manual_seed(1111)
# input_size = 100
# hidden_size = 100
# rnn_type = 'lstm'
# num_layers = 3
# num_hidden_layers = 5
# dropout = 0.2
# nr_cells = 12
# cell_size = 17
# read_heads = 3
# gpu_id = -1
# debug = True
# lr = 0.001
# sequence_max_length = 10
# batch_size = 10
# cuda = gpu_id
# clip = 20
# length = 13
input_size = 100
hidden_size = 100
rnn_type = 'lstm'
num_layers = 3
num_hidden_layers = 5
dropout = 0.2
nr_cells = 12
cell_size = 17
sparse_reads = 3
gpu_id = -1
debug = True
lr = 0.001
sequence_max_length = 10
batch_size = 10
cuda = gpu_id
clip = 20
length = 13
# rnn = DNC(
# input_size=input_size,
# hidden_size=hidden_size,
# rnn_type=rnn_type,
# num_layers=num_layers,
# num_hidden_layers=num_hidden_layers,
# dropout=dropout,
# nr_cells=nr_cells,
# cell_size=cell_size,
# read_heads=read_heads,
# gpu_id=gpu_id,
# debug=debug
# )
rnn = SDNC(
input_size=input_size,
hidden_size=hidden_size,
rnn_type=rnn_type,
num_layers=num_layers,
num_hidden_layers=num_hidden_layers,
dropout=dropout,
nr_cells=nr_cells,
cell_size=cell_size,
sparse_reads=sparse_reads,
gpu_id=gpu_id,
debug=debug
)
# optimizer = optim.Adam(rnn.parameters(), lr=lr)
# optimizer.zero_grad()
optimizer = optim.Adam(rnn.parameters(), lr=lr)
optimizer.zero_grad()
# input_data, target_output = generate_data(batch_size, length, input_size, cuda)
# target_output = target_output.transpose(0, 1).contiguous()
input_data, target_output = generate_data(batch_size, length, input_size, cuda)
target_output = target_output.transpose(0, 1).contiguous()
# (chx, mhx, rv) = (None, None, None)
# outputs = []
# for x in range(6):
# output, (chx, mhx, rv), v = rnn(input_data, (chx, mhx, rv), pass_through_memory=False)
# output = output.transpose(0, 1)
# outputs.append(output)
(chx, mhx, rv) = (None, None, None)
outputs = []
for x in range(6):
output, (chx, mhx, rv), v = rnn(input_data, (chx, mhx, rv), pass_through_memory=False)
output = output.transpose(0, 1)
outputs.append(output)
# output = functools.reduce(lambda x,y: x + y, outputs)
# loss = criterion((output), target_output)
# loss.backward()
output = functools.reduce(lambda x,y: x + y, outputs)
loss = criterion((output), target_output)
loss.backward()
# T.nn.utils.clip_grad_norm(rnn.parameters(), clip)
# optimizer.step()
T.nn.utils.clip_grad_norm(rnn.parameters(), clip)
optimizer.step()
# assert target_output.size() == T.Size([27, 10, 100])
# assert chx[0][0].size() == T.Size([num_hidden_layers,10,100])
# assert mhx['memory'].size() == T.Size([10,12,17])
# assert rv == None
assert target_output.size() == T.Size([27, 10, 100])
assert chx[0][0].size() == T.Size([num_hidden_layers,10,100])
# assert mhx['memory'].size() == T.Size([10,12,17])
assert rv == None