202 lines
4.5 KiB
Python
202 lines
4.5 KiB
Python
|
# #!/usr/bin/env python3
|
||
|
# # -*- coding: utf-8 -*-
|
||
|
|
||
|
import pytest
|
||
|
import numpy as np
|
||
|
|
||
|
import torch.nn as nn
|
||
|
import torch as T
|
||
|
from torch.autograd import Variable as var
|
||
|
import torch.nn.functional as F
|
||
|
from torch.nn.utils import clip_grad_norm
|
||
|
import torch.optim as optim
|
||
|
import numpy as np
|
||
|
|
||
|
import sys
|
||
|
import os
|
||
|
import math
|
||
|
import time
|
||
|
import functools
|
||
|
sys.path.insert(0, '.')
|
||
|
|
||
|
from dnc import SAM
|
||
|
from test_utils import generate_data, criterion
|
||
|
|
||
|
|
||
|
def test_rnn_1():
|
||
|
T.manual_seed(1111)
|
||
|
|
||
|
input_size = 100
|
||
|
hidden_size = 100
|
||
|
rnn_type = 'rnn'
|
||
|
num_layers = 1
|
||
|
num_hidden_layers = 1
|
||
|
dropout = 0
|
||
|
nr_cells = 100
|
||
|
cell_size = 10
|
||
|
read_heads = 1
|
||
|
sparse_reads = 2
|
||
|
gpu_id = -1
|
||
|
debug = True
|
||
|
lr = 0.001
|
||
|
sequence_max_length = 10
|
||
|
batch_size = 10
|
||
|
cuda = gpu_id
|
||
|
clip = 10
|
||
|
length = 10
|
||
|
|
||
|
rnn = SAM(
|
||
|
input_size=input_size,
|
||
|
hidden_size=hidden_size,
|
||
|
rnn_type=rnn_type,
|
||
|
num_layers=num_layers,
|
||
|
num_hidden_layers=num_hidden_layers,
|
||
|
dropout=dropout,
|
||
|
nr_cells=nr_cells,
|
||
|
cell_size=cell_size,
|
||
|
read_heads=read_heads,
|
||
|
sparse_reads=sparse_reads,
|
||
|
gpu_id=gpu_id,
|
||
|
debug=debug
|
||
|
)
|
||
|
|
||
|
optimizer = optim.Adam(rnn.parameters(), lr=lr)
|
||
|
optimizer.zero_grad()
|
||
|
|
||
|
input_data, target_output = generate_data(batch_size, length, input_size, cuda)
|
||
|
target_output = target_output.transpose(0, 1).contiguous()
|
||
|
|
||
|
output, (chx, mhx, rv), v = rnn(input_data, None)
|
||
|
output = output.transpose(0, 1)
|
||
|
|
||
|
loss = criterion((output), target_output)
|
||
|
loss.backward()
|
||
|
|
||
|
T.nn.utils.clip_grad_norm(rnn.parameters(), clip)
|
||
|
optimizer.step()
|
||
|
|
||
|
assert target_output.size() == T.Size([21, 10, 100])
|
||
|
assert chx[0][0].size() == T.Size([10,100])
|
||
|
# assert mhx['memory'].size() == T.Size([10,1,1])
|
||
|
assert rv.size() == T.Size([10, 10])
|
||
|
|
||
|
|
||
|
def test_rnn_n():
|
||
|
T.manual_seed(1111)
|
||
|
|
||
|
input_size = 100
|
||
|
hidden_size = 100
|
||
|
rnn_type = 'rnn'
|
||
|
num_layers = 3
|
||
|
num_hidden_layers = 5
|
||
|
dropout = 0.2
|
||
|
nr_cells = 200
|
||
|
cell_size = 17
|
||
|
read_heads = 2
|
||
|
sparse_reads = 4
|
||
|
gpu_id = -1
|
||
|
debug = True
|
||
|
lr = 0.001
|
||
|
sequence_max_length = 10
|
||
|
batch_size = 10
|
||
|
cuda = gpu_id
|
||
|
clip = 20
|
||
|
length = 13
|
||
|
|
||
|
rnn = SAM(
|
||
|
input_size=input_size,
|
||
|
hidden_size=hidden_size,
|
||
|
rnn_type=rnn_type,
|
||
|
num_layers=num_layers,
|
||
|
num_hidden_layers=num_hidden_layers,
|
||
|
dropout=dropout,
|
||
|
nr_cells=nr_cells,
|
||
|
cell_size=cell_size,
|
||
|
read_heads=read_heads,
|
||
|
sparse_reads=sparse_reads,
|
||
|
gpu_id=gpu_id,
|
||
|
debug=debug
|
||
|
)
|
||
|
|
||
|
optimizer = optim.Adam(rnn.parameters(), lr=lr)
|
||
|
optimizer.zero_grad()
|
||
|
|
||
|
input_data, target_output = generate_data(batch_size, length, input_size, cuda)
|
||
|
target_output = target_output.transpose(0, 1).contiguous()
|
||
|
|
||
|
output, (chx, mhx, rv), v = rnn(input_data, None)
|
||
|
output = output.transpose(0, 1)
|
||
|
|
||
|
loss = criterion((output), target_output)
|
||
|
loss.backward()
|
||
|
|
||
|
T.nn.utils.clip_grad_norm(rnn.parameters(), clip)
|
||
|
optimizer.step()
|
||
|
|
||
|
assert target_output.size() == T.Size([27, 10, 100])
|
||
|
assert chx[0].size() == T.Size([num_hidden_layers,10,100])
|
||
|
# assert mhx['memory'].size() == T.Size([10,12,17])
|
||
|
assert rv.size() == T.Size([10, 34])
|
||
|
|
||
|
|
||
|
def test_rnn_no_memory_pass():
|
||
|
T.manual_seed(1111)
|
||
|
|
||
|
input_size = 100
|
||
|
hidden_size = 100
|
||
|
rnn_type = 'rnn'
|
||
|
num_layers = 3
|
||
|
num_hidden_layers = 5
|
||
|
dropout = 0.2
|
||
|
nr_cells = 5000
|
||
|
cell_size = 17
|
||
|
sparse_reads = 3
|
||
|
gpu_id = -1
|
||
|
debug = True
|
||
|
lr = 0.001
|
||
|
sequence_max_length = 10
|
||
|
batch_size = 10
|
||
|
cuda = gpu_id
|
||
|
clip = 20
|
||
|
length = 13
|
||
|
|
||
|
rnn = SAM(
|
||
|
input_size=input_size,
|
||
|
hidden_size=hidden_size,
|
||
|
rnn_type=rnn_type,
|
||
|
num_layers=num_layers,
|
||
|
num_hidden_layers=num_hidden_layers,
|
||
|
dropout=dropout,
|
||
|
nr_cells=nr_cells,
|
||
|
cell_size=cell_size,
|
||
|
sparse_reads=sparse_reads,
|
||
|
gpu_id=gpu_id,
|
||
|
debug=debug
|
||
|
)
|
||
|
|
||
|
optimizer = optim.Adam(rnn.parameters(), lr=lr)
|
||
|
optimizer.zero_grad()
|
||
|
|
||
|
input_data, target_output = generate_data(batch_size, length, input_size, cuda)
|
||
|
target_output = target_output.transpose(0, 1).contiguous()
|
||
|
|
||
|
(chx, mhx, rv) = (None, None, None)
|
||
|
outputs = []
|
||
|
for x in range(6):
|
||
|
output, (chx, mhx, rv), v = rnn(input_data, (chx, mhx, rv), pass_through_memory=False)
|
||
|
output = output.transpose(0, 1)
|
||
|
outputs.append(output)
|
||
|
|
||
|
output = functools.reduce(lambda x,y: x + y, outputs)
|
||
|
loss = criterion((output), target_output)
|
||
|
loss.backward()
|
||
|
|
||
|
T.nn.utils.clip_grad_norm(rnn.parameters(), clip)
|
||
|
optimizer.step()
|
||
|
|
||
|
assert target_output.size() == T.Size([27, 10, 100])
|
||
|
assert chx[0].size() == T.Size([num_hidden_layers,10,100])
|
||
|
# assert mhx['memory'].size() == T.Size([10,12,17])
|
||
|
assert rv == None
|
||
|
|