pytorch-dnc/test/test_indexes.py

62 lines
1.5 KiB
Python
Raw Normal View History

2017-12-01 22:18:39 +08:00
# #!/usr/bin/env python3
# # -*- coding: utf-8 -*-
# import pytest
# import numpy as np
# import torch.nn as nn
# import torch as T
# from torch.autograd import Variable as var
# import torch.nn.functional as F
# from torch.nn.utils import clip_grad_norm
# import torch.optim as optim
# import numpy as np
# import sys
# import os
# import math
# import time
# import functools
# sys.path.insert(0, '.')
# from faiss import faiss
# from faiss.faiss import cast_integer_to_float_ptr as cast_float
# from faiss.faiss import cast_integer_to_int_ptr as cast_int
# from faiss.faiss import cast_integer_to_long_ptr as cast_long
# from dnc.indexes import Index
# def test_indexes():
# n = 3
# cell_size=20
# nr_cells=1024
# K=10
# probes=32
# d = T.ones(n, cell_size)
# q = T.ones(1, cell_size)
# for gpu_id in (-1, -1):
# i = Index(cell_size=cell_size, nr_cells=nr_cells, K=K, probes=probes, gpu_id=gpu_id)
# d = d if gpu_id == -1 else d.cuda(gpu_id)
# for x in range(10):
# i.add(d)
# i.add(d * 2)
# i.add(d * 3)
# dist, labels = i.search(q*7)
# i.add(d*7, (T.Tensor([1,2,3])*37).long().cuda())
# i.add(d*7, (T.Tensor([1,2,3])*19).long().cuda())
# i.add(d*7, (T.Tensor([1,2,3])*17).long().cuda())
# dist, labels = i.search(q*7)
# assert dist.size() == T.Size([1,K])
# assert labels.size() == T.Size([1, K])
# assert 37 in list(labels[0].cpu().numpy())
# assert 19 in list(labels[0].cpu().numpy())
# assert 17 in list(labels[0].cpu().numpy())
2017-11-30 03:14:26 +08:00