672 lines
26 KiB
Python
Executable File
672 lines
26 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
#
|
|
# Copyright 2017 Robert Csordas. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
#
|
|
# ==============================================================================
|
|
|
|
import functools
|
|
import os
|
|
|
|
import torch.utils.data
|
|
|
|
import Utils.Debug as debug
|
|
from Dataset.Bitmap.AssociativeRecall import AssociativeRecall
|
|
from Dataset.Bitmap.BitmapTaskRepeater import BitmapTaskRepeater
|
|
from Dataset.Bitmap.KeyValue import KeyValue
|
|
from Dataset.Bitmap.CopyTask import CopyData
|
|
from Dataset.Bitmap.KeyValue2Way import KeyValue2Way
|
|
from Dataset.NLP.bAbi import bAbiDataset
|
|
from Models.DNC import DNC, LSTMController, FeedforwardController
|
|
from Utils import Visdom
|
|
from Utils.ArgumentParser import ArgumentParser
|
|
from Utils.Index import index_by_dim
|
|
from Utils.Saver import Saver, GlobalVarSaver, StateSaver
|
|
from Utils.Collate import MetaCollate
|
|
from Utils import gpu_allocator
|
|
from Dataset.NLP.NLPTask import NLPTask
|
|
from tqdm import tqdm
|
|
from Visualize.preview import preview
|
|
from Utils.timer import OnceEvery
|
|
from Utils import Seed
|
|
import time
|
|
import sys
|
|
import signal
|
|
import math
|
|
from Utils import Profile
|
|
|
|
Profile.ENABLED=False
|
|
|
|
def main():
|
|
global i
|
|
global loss_sum
|
|
global running
|
|
parser = ArgumentParser()
|
|
parser.add_argument("-bit_w", type=int, default=8, help="Bit vector length for copy task")
|
|
parser.add_argument("-block_w", type=int, default=3, help="Block width to associative recall task")
|
|
parser.add_argument("-len", type=str, default="4", help="Sequence length for copy task", parser=lambda x: [int(a) for a in x.split("-")])
|
|
parser.add_argument("-repeat", type=str, default="1", help="Sequence length for copy task", parser=lambda x: [int(a) for a in x.split("-")])
|
|
parser.add_argument("-batch_size", type=int, default=16, help="Sequence length for copy task")
|
|
parser.add_argument("-n_subbatch", type=str, default="auto", help="Average this much forward passes to a backward pass")
|
|
parser.add_argument("-max_input_count_per_batch", type=int, default=6000, help="Max batch_size*len that can fit into memory")
|
|
parser.add_argument("-lr", type=float, default=0.0001, help="Learning rate")
|
|
parser.add_argument("-wd", type=float, default=1e-5, help="Weight decay")
|
|
parser.add_argument("-optimizer", type=str, default="rmsprop", help="Optimizer algorithm")
|
|
parser.add_argument("-name", type=str, help="Save training to this directory")
|
|
parser.add_argument("-preview_interval", type=int, default=10, help="Show preview every nth iteration")
|
|
parser.add_argument("-info_interval", type=int, default=10, help="Show info every nth iteration")
|
|
parser.add_argument("-save_interval", type=int, default=500, help="Save network every nth iteration")
|
|
parser.add_argument("-masked_lookup", type=bool, default=1, help="Enable masking in content lookups")
|
|
parser.add_argument("-visport", type=int, default=-1, help="Port to run Visdom server on. -1 to disable")
|
|
parser.add_argument("-gpu", default="auto", type=str, help="Run on this GPU.")
|
|
parser.add_argument("-debug", type=bool, default=1, help="Enable debugging")
|
|
parser.add_argument("-task", type=str, default="copy", help="Task to learn")
|
|
parser.add_argument("-mem_count", type=int, default=16, help="Number of memory cells")
|
|
parser.add_argument("-data_word_size", type=int, default=128, help="Memory word size")
|
|
parser.add_argument("-n_read_heads", type=int, default=1, help="Number of read heads")
|
|
parser.add_argument("-layer_sizes", type=str, default="256", help="Controller layer sizes. Separate with ,. For example 512,256,256", parser=lambda x: [int(y) for y in x.split(",") if y])
|
|
parser.add_argument("-debug_log", type=bool, default=0, help="Enable debug log")
|
|
parser.add_argument("-controller_type", type=str, default="lstm", help="Controller type: lstm or linear")
|
|
parser.add_argument("-lstm_use_all_outputs", type=bool, default=1, help="Use all LSTM outputs as controller output vs use only the last layer")
|
|
parser.add_argument("-momentum", type=float, default=0.9, help="Momentum for optimizer")
|
|
parser.add_argument("-embedding_size", type=int, default=256, help="Size of word embedding for NLP tasks")
|
|
parser.add_argument("-test_interval", type=int, default=10000, help="Run test in this interval")
|
|
parser.add_argument("-dealloc_content", type=bool, default=1, help="Deallocate memory content, unlike DNC, which leaves it unchanged, just decreases the usage counter, causing problems with lookup")
|
|
parser.add_argument("-sharpness_control", type=bool, default=1, help="Distribution sharpness control for forward and backward links")
|
|
parser.add_argument("-think_steps", type=int, default=0, help="Iddle steps before requiring the answer (for bAbi)")
|
|
parser.add_argument("-dump_profile", type=str, save=False)
|
|
parser.add_argument("-test_on_start", default="0", save=False)
|
|
parser.add_argument("-dump_heatmaps", default=False, save=False)
|
|
parser.add_argument("-test_batch_size", default=16)
|
|
parser.add_argument("-mask_min", default=0.0)
|
|
parser.add_argument("-load", type=str, save=False)
|
|
parser.add_argument("-dataset_path", type=str, default="none", parser=ArgumentParser.str_or_none(), help="Specify babi path manually")
|
|
parser.add_argument("-babi_train_tasks", type=str, default="none", parser=ArgumentParser.list_or_none(type=str), help="babi task list to use for training")
|
|
parser.add_argument("-babi_test_tasks", type=str, default="none", parser=ArgumentParser.list_or_none(type=str), help="babi task list to use for testing")
|
|
parser.add_argument("-babi_train_sets", type=str, default="train", parser=ArgumentParser.list_or_none(type=str), help="babi train sets to use")
|
|
parser.add_argument("-babi_test_sets", type=str, default="test", parser=ArgumentParser.list_or_none(type=str), help="babi test sets to use")
|
|
parser.add_argument("-noargsave", type=bool, default=False, help="Do not save modified arguments", save=False)
|
|
parser.add_argument("-demo", type=bool, default=False, help="Do a single step with fixed seed", save=False)
|
|
parser.add_argument("-exit_after", type=int, help="Exit after this amount of steps. Useful for debugging.", save=False)
|
|
parser.add_argument("-grad_clip", type=float, default=10.0, help="Max gradient norm")
|
|
parser.add_argument("-clip_controller", type=float, default=20.0, help="Max gradient norm")
|
|
parser.add_argument("-print_test", default=False, save=False)
|
|
|
|
parser.add_profile([
|
|
ArgumentParser.Profile("babi", {
|
|
"preview_interval": 10,
|
|
"save_interval": 500,
|
|
"task": "babi",
|
|
"mem_count": 256,
|
|
"data_word_size": 64,
|
|
"n_read_heads": 4,
|
|
"layer_sizes": "256",
|
|
"controller_type": "lstm",
|
|
"lstm_use_all_outputs": True,
|
|
"momentum": 0.9,
|
|
"embedding_size": 128,
|
|
"test_interval": 5000,
|
|
"think_steps": 3,
|
|
"batch_size": 2
|
|
}, include=["dnc-msd"]),
|
|
|
|
ArgumentParser.Profile("repeat_copy", {
|
|
"bit_w": 8,
|
|
"repeat": "1-8",
|
|
"len": "2-14",
|
|
"task": "copy",
|
|
"think_steps": 1,
|
|
"preview_interval": 10,
|
|
"info_interval": 10,
|
|
"save_interval": 100,
|
|
"data_word_size": 16,
|
|
"layer_sizes": "32",
|
|
"n_subbatch": 1,
|
|
"controller_type": "lstm",
|
|
}),
|
|
|
|
ArgumentParser.Profile("repeat_copy_simple", {
|
|
"repeat": "1-3",
|
|
}, include="repeat_copy"),
|
|
|
|
ArgumentParser.Profile("dnc", {
|
|
"masked_lookup": False,
|
|
"sharpness_control": False,
|
|
"dealloc_content": False
|
|
}),
|
|
|
|
ArgumentParser.Profile("dnc-m", {
|
|
"masked_lookup": True,
|
|
"sharpness_control": False,
|
|
"dealloc_content": False
|
|
}),
|
|
|
|
ArgumentParser.Profile("dnc-s", {
|
|
"masked_lookup": False,
|
|
"sharpness_control": True,
|
|
"dealloc_content": False
|
|
}),
|
|
|
|
ArgumentParser.Profile("dnc-d", {
|
|
"masked_lookup": False,
|
|
"sharpness_control": False,
|
|
"dealloc_content": True
|
|
}),
|
|
|
|
ArgumentParser.Profile("dnc-md", {
|
|
"masked_lookup": True,
|
|
"sharpness_control": False,
|
|
"dealloc_content": True
|
|
}),
|
|
|
|
ArgumentParser.Profile("dnc-ms", {
|
|
"masked_lookup": True,
|
|
"sharpness_control": True,
|
|
"dealloc_content": False
|
|
}),
|
|
|
|
ArgumentParser.Profile("dnc-sd", {
|
|
"masked_lookup": False,
|
|
"sharpness_control": True,
|
|
"dealloc_content": True
|
|
}),
|
|
|
|
ArgumentParser.Profile("dnc-msd", {
|
|
"masked_lookup": True,
|
|
"sharpness_control": True,
|
|
"dealloc_content": True
|
|
}),
|
|
|
|
ArgumentParser.Profile("keyvalue", {
|
|
"repeat": "1",
|
|
"len": "2-16",
|
|
"mem_count": 16,
|
|
"task": "keyvalue",
|
|
"think_steps": 1,
|
|
"preview_interval": 10,
|
|
"info_interval": 10,
|
|
"data_word_size": 32,
|
|
"bit_w": 12,
|
|
"save_interval": 1000,
|
|
"layer_sizes": "32"
|
|
}),
|
|
|
|
ArgumentParser.Profile("keyvalue2way", {
|
|
"task": "keyvalue2way",
|
|
}, include="keyvalue"),
|
|
|
|
ArgumentParser.Profile("associative_recall",{
|
|
"task": "recall",
|
|
"bit_w": 8,
|
|
"len": "2-16",
|
|
"mem_count": 64,
|
|
"data_word_size": 32,
|
|
"n_read_heads": 1,
|
|
"layer_sizes": "128",
|
|
"controller_type": "lstm",
|
|
"lstm_use_all_outputs": 1,
|
|
"think_steps": 1,
|
|
"mask_min": 0.1,
|
|
"info_interval": 10,
|
|
"save_interval": 1000,
|
|
"preview_interval": 10,
|
|
"n_subbatch": 1,
|
|
})
|
|
])
|
|
|
|
opt = parser.parse()
|
|
assert opt.name is not None, "Training dir (-name parameter) not given"
|
|
opt = parser.sync(os.path.join(opt.name, "args.json"), save=not opt.noargsave)
|
|
|
|
if opt.demo:
|
|
Seed.fix()
|
|
|
|
os.makedirs(os.path.join(opt.name,"save"), exist_ok=True)
|
|
os.makedirs(os.path.join(opt.name,"preview"), exist_ok=True)
|
|
|
|
gpu_allocator.use_gpu(opt.gpu)
|
|
|
|
debug.enableDebug = opt.debug_log
|
|
|
|
if opt.visport>0:
|
|
Visdom.start(opt.visport)
|
|
|
|
Visdom.Text("Name").set(opt.name)
|
|
|
|
class LengthHackSampler:
|
|
def __init__(self, batch_size, length):
|
|
self.length = length
|
|
self.batch_size = batch_size
|
|
|
|
def __iter__(self):
|
|
while True:
|
|
len = self.length() if callable(self.length) else self.length
|
|
yield [len] * self.batch_size
|
|
|
|
def __len__(self):
|
|
return 0x7FFFFFFF
|
|
|
|
embedding = None
|
|
test_set = None
|
|
curriculum = None
|
|
loader_reset = False
|
|
if opt.task=="copy":
|
|
dataset = CopyData(bit_w=opt.bit_w)
|
|
in_size = opt.bit_w + 1
|
|
out_size = in_size
|
|
elif opt.task=="recall":
|
|
dataset = AssociativeRecall(bit_w=opt.bit_w, block_w=opt.block_w)
|
|
in_size = opt.bit_w + 2
|
|
out_size = in_size
|
|
elif opt.task=="keyvalue":
|
|
assert opt.bit_w % 2==0, "Key-value datasets works only with even bit_w"
|
|
dataset = KeyValue(bit_w=opt.bit_w)
|
|
in_size = opt.bit_w + 1
|
|
out_size = opt.bit_w//2
|
|
elif opt.task=="keyvalue2way":
|
|
assert opt.bit_w % 2==0, "Key-value datasets works only with even bit_w"
|
|
dataset = KeyValue2Way(bit_w=opt.bit_w)
|
|
in_size = opt.bit_w + 2
|
|
out_size = opt.bit_w//2
|
|
elif opt.task=="babi":
|
|
dataset = bAbiDataset(think_steps=opt.think_steps, dir_name=opt.dataset_path)
|
|
test_set = bAbiDataset(think_steps=opt.think_steps, dir_name=opt.dataset_path, name="test")
|
|
dataset.use(opt.babi_train_tasks, opt.babi_train_sets)
|
|
in_size = opt.embedding_size
|
|
print("bAbi: loaded total of %d sequences." % len(dataset))
|
|
test_set.use(opt.babi_test_tasks, opt.babi_test_sets)
|
|
out_size = len(dataset.vocabulary)
|
|
print("bAbi: using %d sequences for training, %d for testing" % (len(dataset), len(test_set)))
|
|
else:
|
|
assert False, "Invalid task: %s" % opt.task
|
|
|
|
if opt.task in ["babi"]:
|
|
data_loader = torch.utils.data.DataLoader(dataset, batch_size=opt.batch_size, num_workers=4, pin_memory=True, shuffle=True, collate_fn=MetaCollate())
|
|
test_loader = torch.utils.data.DataLoader(test_set, batch_size=opt.test_batch_size, num_workers=opt.test_batch_size, pin_memory=True, shuffle=False, collate_fn=MetaCollate()) if test_set is not None else None
|
|
else:
|
|
dataset = BitmapTaskRepeater(dataset)
|
|
data_loader = torch.utils.data.DataLoader(dataset, batch_sampler=LengthHackSampler(opt.batch_size, BitmapTaskRepeater.key_sampler(opt.len, opt.repeat)), num_workers=1, pin_memory=True)
|
|
|
|
if opt.controller_type == "lstm":
|
|
controller_constructor = functools.partial(LSTMController, out_from_all_layers=opt.lstm_use_all_outputs)
|
|
elif opt.controller_type == "linear":
|
|
controller_constructor = FeedforwardController
|
|
else:
|
|
assert False, "Invalid controller: %s" % opt.controller_type
|
|
|
|
model = DNC(in_size, out_size, opt.data_word_size, opt.mem_count, opt.n_read_heads, controller_constructor(opt.layer_sizes),
|
|
batch_first=True, mask=opt.masked_lookup, dealloc_content=opt.dealloc_content,
|
|
link_sharpness_control=opt.sharpness_control,
|
|
mask_min=opt.mask_min, clip_controller=opt.clip_controller)
|
|
|
|
params = [
|
|
{'params': [p for n, p in model.named_parameters() if not n.endswith(".bias")]},
|
|
{'params': [p for n, p in model.named_parameters() if n.endswith(".bias")], 'weight_decay': 0}
|
|
]
|
|
|
|
device = torch.device('cuda') if opt.gpu!="none" else torch.device("cpu")
|
|
print("DEVICE: ", device)
|
|
|
|
if isinstance(dataset, NLPTask):
|
|
embedding = torch.nn.Embedding(len(dataset.vocabulary), opt.embedding_size).to(device)
|
|
params.append({'params': embedding.parameters(), 'weight_decay': 0})
|
|
|
|
if opt.optimizer=="sgd":
|
|
optimizer = torch.optim.SGD(params, lr=opt.lr, weight_decay=opt.wd, momentum=opt.momentum)
|
|
elif opt.optimizer=="adam":
|
|
optimizer = torch.optim.Adam(params, lr=opt.lr, weight_decay=opt.wd)
|
|
elif opt.optimizer == "rmsprop":
|
|
optimizer = torch.optim.RMSprop(params, lr=opt.lr, weight_decay=opt.wd, momentum=opt.momentum, eps=1e-10)
|
|
else:
|
|
assert "Invalid optimizer: %s" % opt.optimizer
|
|
|
|
n_params = sum([sum([t.numel() for t in d['params']]) for d in params])
|
|
print("Number of parameters: %d" % n_params)
|
|
|
|
model = model.to(device)
|
|
if embedding is not None and hasattr(embedding, "to"):
|
|
embedding = embedding.to(device)
|
|
|
|
i=0
|
|
loss_sum = 0
|
|
|
|
loss_plot = Visdom.Plot2D("loss", store_interval=opt.info_interval, xlabel="iterations", ylabel="loss")
|
|
|
|
if curriculum is not None:
|
|
curriculum_plot = Visdom.Plot2D("curriculum lesson" +
|
|
(" (last %d)" % (curriculum.n_lessons-1) if curriculum.n_lessons is not None else ""),
|
|
xlabel="iterations", ylabel="lesson")
|
|
curriculum_accuracy = Visdom.Plot2D("curriculum accuracy", xlabel="iterations", ylabel="accuracy")
|
|
|
|
saver = Saver(os.path.join(opt.name, "save"), short_interval=opt.save_interval)
|
|
saver.register("model", StateSaver(model))
|
|
saver.register("optimizer", StateSaver(optimizer))
|
|
saver.register("i", GlobalVarSaver("i"))
|
|
saver.register("loss_sum", GlobalVarSaver("loss_sum"))
|
|
saver.register("loss_plot", StateSaver(loss_plot))
|
|
saver.register("dataset", StateSaver(dataset))
|
|
if test_set:
|
|
saver.register("test_set", StateSaver(test_set))
|
|
|
|
if curriculum is not None:
|
|
saver.register("curriculum", StateSaver(curriculum))
|
|
saver.register("curriculum_plot", StateSaver(curriculum_plot))
|
|
saver.register("curriculum_accuracy", StateSaver(curriculum_accuracy))
|
|
|
|
if isinstance(dataset, NLPTask):
|
|
saver.register("word_embeddings", StateSaver(embedding))
|
|
elif embedding is not None:
|
|
saver.register("embeddings", StateSaver(embedding))
|
|
|
|
if not saver.load(opt.load):
|
|
model.reset_parameters()
|
|
if embedding is not None:
|
|
embedding.reset_parameters()
|
|
|
|
visualizers = {}
|
|
|
|
debug_schemas={
|
|
"read_head" : {
|
|
"list_dim" : 2
|
|
},
|
|
"temporal_links/forward_dists" : {
|
|
"list_dim" : 2
|
|
},
|
|
"temporal_links/backward_dists" : {
|
|
"list_dim" : 2
|
|
}
|
|
}
|
|
|
|
def plot_debug(debug, prefix="", schema={}):
|
|
if debug is None:
|
|
return
|
|
|
|
for k, v in debug.items():
|
|
curr_name = prefix+k
|
|
if curr_name in debug_schemas:
|
|
curr_schema = schema.copy()
|
|
curr_schema.update(debug_schemas[curr_name])
|
|
else:
|
|
curr_schema = schema
|
|
|
|
if isinstance(v, dict):
|
|
plot_debug(v, curr_name+"/", curr_schema)
|
|
continue
|
|
|
|
data = v[0]
|
|
|
|
if curr_schema.get("list_dim",-1) > 0:
|
|
if data.ndim != 3:
|
|
print("WARNING: unknown data shape for array display: %s, tensor %s" % (data.shape, curr_name))
|
|
continue
|
|
|
|
n_steps = data.shape[curr_schema["list_dim"]-1]
|
|
if curr_name not in visualizers:
|
|
visualizers[curr_name] = [Visdom.Heatmap(curr_name+"_%d" % i, dumpdir=os.path.join(opt.name, "preview") if opt.dump_heatmaps else None) for i in range(n_steps)]
|
|
|
|
for i in range(n_steps):
|
|
visualizers[curr_name][i].draw(index_by_dim(data, curr_schema["list_dim"]-1, i))
|
|
else:
|
|
if data.ndim != 2:
|
|
print("WARNING: unknown data shape for simple display: %s, tensor %s" % (data.shape, curr_name))
|
|
continue
|
|
|
|
if curr_name not in visualizers:
|
|
visualizers[curr_name] = Visdom.Heatmap(curr_name, dumpdir=os.path.join(opt.name, "preview") if opt.dump_heatmaps else None)
|
|
|
|
visualizers[curr_name].draw(data)
|
|
|
|
|
|
def run_model(input, debug=None):
|
|
if isinstance(dataset, NLPTask):
|
|
input = embedding(input["input"])
|
|
else:
|
|
input = input["input"] * 2.0 - 1.0
|
|
|
|
return model(input, debug=debug)
|
|
|
|
def multiply_grads(params, mul):
|
|
if mul==1:
|
|
return
|
|
|
|
for pa in params:
|
|
for p in pa["params"]:
|
|
p.grad.data *= mul
|
|
|
|
def test():
|
|
if test_set is None:
|
|
return
|
|
|
|
print("TESTING...")
|
|
start_time=time.time()
|
|
t = test_set.start_test()
|
|
with torch.no_grad():
|
|
for data in tqdm(test_loader):
|
|
data = {k: v.to(device) if torch.is_tensor(v) else v for k, v in data.items()}
|
|
if hasattr(dataset, "prepare"):
|
|
data = dataset.prepare(data)
|
|
|
|
net_out = run_model(data)
|
|
test_set.veify_result(t, data, net_out)
|
|
|
|
test_set.show_test_results(i, t)
|
|
print("Test done in %gs" % (time.time() - start_time))
|
|
|
|
if opt.test_on_start.lower() in ["on", "1", "true", "quit"]:
|
|
test()
|
|
if opt.test_on_start.lower() == "quit":
|
|
saver.write(i)
|
|
sys.exit(-1)
|
|
|
|
if opt.print_test:
|
|
model.eval()
|
|
total = 0
|
|
correct = 0
|
|
with torch.no_grad():
|
|
for data in tqdm(test_loader):
|
|
if not running:
|
|
return
|
|
|
|
data = {k: v.to(device) if torch.is_tensor(v) else v for k, v in data.items()}
|
|
if hasattr(test_set, "prepare"):
|
|
data = test_set.prepare(data)
|
|
|
|
net_out = run_model(data)
|
|
|
|
c,t = test_set.curriculum_measure(net_out, data["output"])
|
|
total += t
|
|
correct += c
|
|
|
|
print("Test result: %2.f%% (%d out of %d correct)" % (100.0*correct/total, correct, total))
|
|
model.train()
|
|
return
|
|
|
|
iter_start_time = time.time() if i % opt.info_interval == 0 else None
|
|
data_load_total_time = 0
|
|
|
|
start_i = i
|
|
|
|
if opt.dump_profile:
|
|
profiler = torch.autograd.profiler.profile(use_cuda=True)
|
|
|
|
|
|
if opt.dump_heatmaps:
|
|
dataset.set_dump_dir(os.path.join(opt.name, "preview"))
|
|
|
|
@preview()
|
|
def do_visualize(raw_data, output, pos_map, debug):
|
|
if pos_map is not None:
|
|
output = embedding.backmap_output(output, pos_map, raw_data["output"].shape[1])
|
|
dataset.visualize_preview(raw_data, output)
|
|
|
|
if debug is not None:
|
|
plot_debug(debug)
|
|
|
|
preview_timer=OnceEvery(opt.preview_interval)
|
|
|
|
pos_map = None
|
|
start_iter = i
|
|
|
|
if curriculum is not None:
|
|
curriculum.init()
|
|
|
|
while running:
|
|
data_load_timer = time.time()
|
|
for data in data_loader:
|
|
if not running:
|
|
break
|
|
|
|
if loader_reset:
|
|
print("Loader reset requested. Resetting...")
|
|
loader_reset = False
|
|
if curriculum is not None:
|
|
curriculum.lesson_started()
|
|
break
|
|
|
|
if opt.dump_profile:
|
|
if i==start_i+1:
|
|
print("Starting profiler")
|
|
profiler.__enter__()
|
|
elif i==start_i+5+1:
|
|
print("Stopping profiler")
|
|
profiler.__exit__(None, None, None)
|
|
print("Average stats")
|
|
print(profiler.key_averages().table("cpu_time_total"))
|
|
print("Writing trace to file")
|
|
profiler.export_chrome_trace(opt.dump_profile)
|
|
print("Done.")
|
|
sys.exit(0)
|
|
else:
|
|
print("Step %d out of 5" % (i-start_i))
|
|
|
|
debug.dbg_print("-------------------------------------")
|
|
raw_data = data
|
|
|
|
data = {k: v.to(device) if torch.is_tensor(v) else v for k,v in data.items()}
|
|
if hasattr(dataset, "prepare"):
|
|
data = dataset.prepare(data)
|
|
|
|
data_load_total_time += time.time() - data_load_timer
|
|
|
|
need_preview = preview_timer()
|
|
debug_data = {} if opt.debug and need_preview else None
|
|
|
|
|
|
optimizer.zero_grad()
|
|
|
|
if opt.n_subbatch=="auto":
|
|
n_subbatch = math.ceil(data["input"].numel() / opt.max_input_count_per_batch)
|
|
else:
|
|
n_subbatch = int(opt.n_subbatch)
|
|
|
|
real_batch = max(math.floor(opt.batch_size/n_subbatch),1)
|
|
n_subbatch = math.ceil(opt.batch_size/real_batch)
|
|
remaning_batch = opt.batch_size % real_batch
|
|
|
|
for subbatch in range(n_subbatch):
|
|
if not running:
|
|
break
|
|
input = data["input"]
|
|
target = data["output"]
|
|
|
|
if n_subbatch!=1:
|
|
input = input[subbatch * real_batch: (subbatch + 1) * real_batch]
|
|
target = target[subbatch * real_batch:(subbatch + 1) * real_batch]
|
|
|
|
f2 = data.copy()
|
|
f2["input"] = input
|
|
output = run_model(f2, debug=debug_data if subbatch==n_subbatch-1 else None)
|
|
l = dataset.loss(output, target)
|
|
debug.nan_check(l, force=True)
|
|
l.backward()
|
|
|
|
if curriculum is not None:
|
|
curriculum.update(*dataset.curriculum_measure(output, target))
|
|
|
|
if remaning_batch!=0 and subbatch == n_subbatch-2:
|
|
multiply_grads(params, real_batch/remaning_batch)
|
|
|
|
if n_subbatch!=1:
|
|
if remaning_batch==0:
|
|
multiply_grads(params, 1/n_subbatch)
|
|
else:
|
|
multiply_grads(params, remaning_batch / opt.batch_size)
|
|
|
|
for p in params:
|
|
torch.nn.utils.clip_grad_norm_(p["params"], opt.grad_clip)
|
|
|
|
optimizer.step()
|
|
|
|
i += 1
|
|
|
|
curr_loss = l.data.item()
|
|
loss_plot.add_point(i, curr_loss)
|
|
|
|
loss_sum += curr_loss
|
|
|
|
|
|
if i % opt.info_interval == 0:
|
|
tim = time.time()
|
|
loss_avg = loss_sum / opt.info_interval
|
|
|
|
if curriculum is not None:
|
|
curriculum_accuracy.add_point(i, curriculum.get_accuracy())
|
|
curriculum_plot.add_point(i, curriculum.step)
|
|
|
|
message = "Iteration %d, loss: %.4f" % (i, loss_avg)
|
|
if iter_start_time is not None:
|
|
message += " (%.2f ms/iter, load time %.2g ms/iter, visport: %s)" % (
|
|
(tim - iter_start_time) / opt.info_interval * 1000.0,
|
|
data_load_total_time / opt.info_interval * 1000.0,
|
|
Visdom.port)
|
|
print(message)
|
|
iter_start_time = tim
|
|
loss_sum = 0
|
|
data_load_total_time = 0
|
|
|
|
debug.dbg_print("Iteration %d, loss %g" % (i, curr_loss))
|
|
|
|
if need_preview:
|
|
do_visualize(raw_data, output, pos_map, debug_data)
|
|
|
|
if i % opt.test_interval==0:
|
|
test()
|
|
|
|
saver.tick(i)
|
|
|
|
if opt.demo and opt.exit_after is None:
|
|
running = False
|
|
input("Press enter to quit.")
|
|
|
|
if opt.exit_after is not None and (i-start_iter)>=opt.exit_after:
|
|
running=False
|
|
|
|
data_load_timer = time.time()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
global running
|
|
running = True
|
|
|
|
|
|
def signal_handler(signal, frame):
|
|
global running
|
|
print('You pressed Ctrl+C!')
|
|
running = False
|
|
|
|
|
|
signal.signal(signal.SIGINT, signal_handler)
|
|
|
|
main()
|