264 lines
6.0 KiB
Python
264 lines
6.0 KiB
Python
|
# Copyright 2017 Robert Csordas. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
#
|
||
|
# ==============================================================================
|
||
|
|
||
|
import torch
|
||
|
import torch.nn.functional as F
|
||
|
import numpy as np
|
||
|
|
||
|
float32 = [np.float32, torch.float32]
|
||
|
float64 = [np.float64, torch.float64]
|
||
|
uint8 = [np.uint8, torch.uint8]
|
||
|
|
||
|
_all_types = [float32, float64, uint8]
|
||
|
|
||
|
_dtype_numpy_map = {v[0]().dtype.name:v for v in _all_types}
|
||
|
_dtype_pytorch_map = {v[1]:v for v in _all_types}
|
||
|
|
||
|
|
||
|
def dtype(t):
|
||
|
if torch.is_tensor(t):
|
||
|
return _dtype_pytorch_map[t.dtype]
|
||
|
else:
|
||
|
return _dtype_numpy_map[t.dtype.name]
|
||
|
|
||
|
|
||
|
def cast(t, type):
|
||
|
if torch.is_tensor(t):
|
||
|
return t.type(type[1])
|
||
|
else:
|
||
|
return t.astype(type[0])
|
||
|
|
||
|
|
||
|
def to_numpy(t):
|
||
|
if torch.is_tensor(t):
|
||
|
return t.detach().cpu().numpy()
|
||
|
else:
|
||
|
return t
|
||
|
|
||
|
|
||
|
def to_list(t):
|
||
|
t = to_numpy(t)
|
||
|
if isinstance(t, np.ndarray):
|
||
|
t = t.tolist()
|
||
|
return t
|
||
|
|
||
|
|
||
|
def is_tensor(t):
|
||
|
return torch.is_tensor(t) or isinstance(t, np.ndarray)
|
||
|
|
||
|
|
||
|
def first_batch(t):
|
||
|
if is_tensor(t):
|
||
|
return t[0]
|
||
|
else:
|
||
|
return t
|
||
|
|
||
|
|
||
|
def ndim(t):
|
||
|
if torch.is_tensor(t):
|
||
|
return t.dim()
|
||
|
else:
|
||
|
return t.ndim
|
||
|
|
||
|
|
||
|
def shape(t):
|
||
|
return list(t.shape)
|
||
|
|
||
|
|
||
|
def transpose(t, axis):
|
||
|
if torch.is_tensor(t):
|
||
|
return t.permute(axis)
|
||
|
else:
|
||
|
return np.transpose(t, axis)
|
||
|
|
||
|
|
||
|
def apply_recursive(d, fn, filter=None):
|
||
|
if isinstance(d, list):
|
||
|
return [apply_recursive(da, fn) for da in d]
|
||
|
elif isinstance(d, tuple):
|
||
|
return tuple(apply_recursive(list(d), fn))
|
||
|
elif isinstance(d, dict):
|
||
|
return {k: apply_recursive(v, fn) for k, v in d.items()}
|
||
|
else:
|
||
|
if filter is None or filter(d):
|
||
|
return fn(d)
|
||
|
else:
|
||
|
return d
|
||
|
|
||
|
|
||
|
def apply_to_tensors(d, fn):
|
||
|
return apply_recursive(d, fn, torch.is_tensor)
|
||
|
|
||
|
|
||
|
def recursive_decorator(apply_this_fn):
|
||
|
def decorator(func):
|
||
|
def wrapped_funct(*args, **kwargs):
|
||
|
args = apply_recursive(args, apply_this_fn)
|
||
|
kwargs = apply_recursive(kwargs, apply_this_fn)
|
||
|
|
||
|
return func(*args, **kwargs)
|
||
|
|
||
|
return wrapped_funct
|
||
|
|
||
|
return decorator
|
||
|
|
||
|
untensor = recursive_decorator(to_numpy)
|
||
|
unnumpy = recursive_decorator(to_list)
|
||
|
|
||
|
def unbatch(only_if_dim_equal=None):
|
||
|
if only_if_dim_equal is not None and not isinstance(only_if_dim_equal, list):
|
||
|
only_if_dim_equal = [only_if_dim_equal]
|
||
|
|
||
|
def get_first_batch(t):
|
||
|
if is_tensor(t) and (only_if_dim_equal is None or ndim(t) in only_if_dim_equal):
|
||
|
return t[0]
|
||
|
else:
|
||
|
return t
|
||
|
|
||
|
return recursive_decorator(get_first_batch)
|
||
|
|
||
|
|
||
|
def sigmoid(t):
|
||
|
if torch.is_tensor(t):
|
||
|
return torch.sigmoid(t)
|
||
|
else:
|
||
|
return 1.0 / (1.0 + np.exp(-t))
|
||
|
|
||
|
|
||
|
def argmax(t, dim):
|
||
|
if torch.is_tensor(t):
|
||
|
_, res = t.max(dim)
|
||
|
else:
|
||
|
res = np.argmax(t, axis=dim)
|
||
|
|
||
|
return res
|
||
|
|
||
|
|
||
|
def flip(t, axis):
|
||
|
if torch.is_tensor(t):
|
||
|
return t.flip(axis)
|
||
|
else:
|
||
|
return np.flip(t, axis)
|
||
|
|
||
|
|
||
|
def transpose(t, axes):
|
||
|
if torch.is_tensor(t):
|
||
|
return t.permute(*axes)
|
||
|
else:
|
||
|
return np.transpose(t, axes)
|
||
|
|
||
|
|
||
|
def split_n(t, axis):
|
||
|
if torch.is_tensor(t):
|
||
|
return t.split(1, dim=axis)
|
||
|
else:
|
||
|
return np.split(t, t.shape[axis], axis=axis)
|
||
|
|
||
|
|
||
|
def cat(array_of_tensors, axis):
|
||
|
if torch.is_tensor(array_of_tensors[0]):
|
||
|
return torch.cat(array_of_tensors, axis)
|
||
|
else:
|
||
|
return np.concatenate(array_of_tensors, axis)
|
||
|
|
||
|
|
||
|
def clamp(t, min=None, max=None):
|
||
|
if torch.is_tensor(t):
|
||
|
return t.clamp(min, max)
|
||
|
else:
|
||
|
if min is not None:
|
||
|
t = np.maximum(t, min)
|
||
|
|
||
|
if max is not None:
|
||
|
t = np.minimum(t, max)
|
||
|
|
||
|
return t
|
||
|
|
||
|
|
||
|
def power(t, p):
|
||
|
if torch.is_tensor(t) or torch.is_tensor(p):
|
||
|
return torch.pow(t, p)
|
||
|
else:
|
||
|
return np.power(t, p)
|
||
|
|
||
|
|
||
|
def random_normal_as(a, mean, std, seed=None):
|
||
|
if torch.is_tensor(a):
|
||
|
return torch.randn_like(a) * std + mean
|
||
|
else:
|
||
|
if seed is None:
|
||
|
seed = np.random
|
||
|
return seed.normal(loc=mean, scale=std, size=shape(a))
|
||
|
|
||
|
|
||
|
def pad(t, pad):
|
||
|
assert ndim(t) == 4
|
||
|
|
||
|
if torch.is_tensor(t):
|
||
|
return F.pad(t, pad)
|
||
|
else:
|
||
|
assert np.pad(t, ([0,0], [0,0], pad[0:2], pad[2:]))
|
||
|
|
||
|
|
||
|
def dx(img):
|
||
|
lsh = img[:, :, :, 2:]
|
||
|
orig = img[:, :, :, :-2]
|
||
|
|
||
|
return pad(0.5 * (lsh - orig), (1, 1, 0, 0))
|
||
|
|
||
|
|
||
|
def dy(img):
|
||
|
ush = img[:, :, 2:, :]
|
||
|
orig = img[:, :, :-2, :]
|
||
|
|
||
|
return pad(0.5 * (ush - orig), (0, 0, 1, 1))
|
||
|
|
||
|
|
||
|
def reshape(t, shape):
|
||
|
if torch.is_tensor(t):
|
||
|
return t.view(*shape)
|
||
|
else:
|
||
|
return t.reshape(*shape)
|
||
|
|
||
|
|
||
|
def broadcast_to_beginning(t, target):
|
||
|
if torch.is_tensor(t):
|
||
|
nd_target = target.dim()
|
||
|
t_shape = list(t.shape)
|
||
|
return t.view(*t_shape, *([1]*(nd_target-len(t_shape))))
|
||
|
else:
|
||
|
nd_target = target.ndim
|
||
|
t_shape = list(t.shape)
|
||
|
return t.reshape(*t_shape, *([1] * (nd_target - len(t_shape))))
|
||
|
|
||
|
|
||
|
def lin_combine(d1,w1, d2,w2, bcast_begin=False):
|
||
|
if isinstance(d1, (list, tuple)):
|
||
|
assert len(d1) == len(d2)
|
||
|
res = [lin_combine(d1[i], w1, d2[i], w2) for i in range(len(d1))]
|
||
|
if isinstance(d1, tuple):
|
||
|
res = tuple(d1)
|
||
|
elif isinstance(d1, dict):
|
||
|
res = {k: lin_combine(v, w1, d2[k], w2) for k, v in d1.items()}
|
||
|
else:
|
||
|
if bcast_begin:
|
||
|
w1 = broadcast_to_beginning(w1, d1)
|
||
|
w2 = broadcast_to_beginning(w2, d2)
|
||
|
|
||
|
res = d1 * w1 + d2 * w2
|
||
|
|
||
|
return res
|