mirror of
https://github.com/JoergFranke/ADNC.git
synced 2024-11-17 22:08:04 +08:00
234 lines
11 KiB
Python
Executable File
234 lines
11 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# Copyright 2018 Jörg Franke
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
# ==============================================================================
|
|
import argparse
|
|
import os
|
|
import sys
|
|
import time
|
|
|
|
import numpy as np
|
|
import tensorflow as tf
|
|
from tqdm import tqdm
|
|
|
|
from adnc.analysis import Analyser
|
|
from adnc.data import DataLoader
|
|
from adnc.model import MANN, Optimizer, Supporter
|
|
from adnc.model.utils import EarlyStop
|
|
|
|
"""
|
|
This script performs starts a training run on the bAbI task. The training can be fully configured in the config.yml
|
|
file. To restore a session use the --sess and --check flag.
|
|
"""
|
|
|
|
tf.reset_default_graph()
|
|
|
|
parser = argparse.ArgumentParser(description='Process some integers.')
|
|
parser.add_argument('--sess', type=int, default=False, help='session number')
|
|
parser.add_argument('--check', type=int, default=False, help='restore checkpoint')
|
|
args = parser.parse_args()
|
|
|
|
session_no = args.sess # allows to restore a specific session
|
|
if not session_no:
|
|
session_no = False
|
|
|
|
restore_checkpoint = args.check # allows to restore a specific checkpoint
|
|
if not restore_checkpoint:
|
|
restore_checkpoint = False
|
|
|
|
dataset_name = 'babi_task' # defines the dataset choosen from config
|
|
model_type = 'mann' # type of model, currently only 'mann'
|
|
|
|
experiment_name = 'github_example' # name of the experiment
|
|
|
|
project_dir = 'experiments/' # folder to save experiments
|
|
config_file = 'config.yml' # name of config file
|
|
|
|
early_stop = EarlyStop(10) # initialize early stopping after 10 higher losses in a row
|
|
|
|
analyse = True # allows a closer analysis of the training progress, like memory influence
|
|
plot_process = True # plots a function plot after each epoch
|
|
|
|
sp = Supporter(project_dir, config_file, experiment_name, dataset_name, model_type,
|
|
session_no) # initializes supporter class for experiment handling
|
|
|
|
dl = DataLoader(sp.config(dataset_name)) # initializes data loader class
|
|
valid_loader = dl.get_data_loader('valid') # gets a valid data iterator
|
|
train_loader = dl.get_data_loader('train') # gets a train data iterator
|
|
|
|
if analyse:
|
|
ana = Analyser(sp.session_dir, save_fig=plot_process,
|
|
save_variables=True) # initilizes a analyzer class
|
|
|
|
sp.config(model_type)['input_size'] = dl.x_size # after the data loader is initilized, the input size
|
|
sp.config(model_type)['output_size'] = dl.y_size # and output size is known and used for the model
|
|
model = MANN(sp.config('mann'), analyse) # initilizes the model class
|
|
|
|
data, target, mask = model.feed # TF data, target and mask placeholders for training
|
|
|
|
trainer = Optimizer(sp.config('training'), model.loss,
|
|
model.trainable_variables) # initilizes a trainer class with the optimizer
|
|
optimizer = trainer.optimizer # the optimizer for training, similar to TF
|
|
|
|
init_op = tf.global_variables_initializer()
|
|
saver = tf.train.Saver(max_to_keep=30)
|
|
|
|
summary_train_loss = tf.summary.scalar("train_loss", model.loss)
|
|
summary_valid_loss = tf.summary.scalar("valid_loss", model.loss)
|
|
lstm_scale = tf.summary.scalar("lstm_scale", tf.reduce_mean(model.trainable_variables[2]))
|
|
lstm_beta = tf.summary.scalar("lstm_beta", tf.reduce_mean(model.trainable_variables[3]))
|
|
|
|
sp.pub("vocabulary size: {}".format(dl.vocabulary_size)) # prints values and logs it to a log file
|
|
sp.pub("train set length: {}".format(dl.sample_amount('train')))
|
|
sp.pub("train batch amount: {}".format(dl.batch_amount('train')))
|
|
sp.pub("valid set length: {}".format(dl.sample_amount('valid')))
|
|
sp.pub("valid batch amount: {}".format(dl.batch_amount('valid')))
|
|
sp.pub("model parameter amount: {}".format(model.parameter_amount))
|
|
|
|
conf = tf.ConfigProto() # TF session config for optimal GPU usage
|
|
conf.gpu_options.per_process_gpu_memory_fraction = 0.8
|
|
conf.gpu_options.allocator_type = 'BFC'
|
|
conf.gpu_options.allow_growth = True
|
|
conf.allow_soft_placement = True
|
|
|
|
with tf.Session(config=conf) as sess:
|
|
if sp.restore and restore_checkpoint: # restores model dumps after a crash or to continiue training
|
|
saver.restore(sess, os.path.join(sp.session_dir, "model_dump_{}.ckpt".format(restore_checkpoint)))
|
|
epoch_start = restore_checkpoint + 1
|
|
sp.pub("restart training with checkpoint {}".format(epoch_start - 1))
|
|
elif sp.restore and not restore_checkpoint:
|
|
if tf.train.latest_checkpoint(sp.session_dir) == None:
|
|
sess.run(init_op)
|
|
epoch_start = 0
|
|
sp.pub("start new training")
|
|
else:
|
|
saver.restore(sess, tf.train.latest_checkpoint(sp.session_dir))
|
|
epoch_start = int(tf.train.latest_checkpoint(sp.session_dir).split('_')[-1].split('.')[0]) + 1
|
|
sp.pub("restart training with checkpoint {}".format(epoch_start - 1))
|
|
else:
|
|
sess.run(init_op)
|
|
epoch_start = 0
|
|
sp.pub("start new training")
|
|
|
|
writer = tf.summary.FileWriter(os.path.join(sp.session_dir, "summary"), sess.graph)
|
|
|
|
for e in range(epoch_start, sp.config('training')['epochs']): # loop over all training epochs
|
|
|
|
train_cost = 0
|
|
train_count = 0
|
|
all_corrects = 0
|
|
all_overall = 0
|
|
time_e = time.time()
|
|
time_0 = time.time()
|
|
|
|
for step in tqdm(range(int(dl.batch_amount('train')))): # loop over all training samples
|
|
|
|
sample = next(train_loader) # new training sample from train iterator
|
|
|
|
_, c, summary, lb, ls = sess.run([optimizer, model.loss, summary_train_loss, lstm_beta, lstm_scale],
|
|
feed_dict={data: sample['x'], target: sample['y'], mask: sample['m']})
|
|
train_cost += c
|
|
train_count += 1
|
|
writer.add_summary(summary, e * dl.batch_amount('train') + step)
|
|
writer.add_summary(lb, e * dl.batch_amount('train') + step)
|
|
writer.add_summary(ls, e * dl.batch_amount('train') + step)
|
|
|
|
valid_cost = 0
|
|
valid_count = 0
|
|
|
|
for v in range(int(dl.batch_amount('valid'))): # loop over all validation samples
|
|
vsample = next(valid_loader)
|
|
vcost, vpred, summary = sess.run([model.loss, model.prediction, summary_valid_loss],
|
|
feed_dict={data: vsample['x'], target: vsample['y'], mask: vsample['m']})
|
|
valid_cost += vcost
|
|
valid_count += 1
|
|
writer.add_summary(summary, e * dl.batch_amount('valid') + v)
|
|
tm = np.argmax(vsample['y'], axis=-1) # calculates the word error rate
|
|
pm = np.argmax(vpred, axis=-1)
|
|
corrects = np.equal(tm, pm)
|
|
all_corrects += np.sum(corrects * vsample['m'])
|
|
all_overall += np.sum(vsample['m'])
|
|
|
|
valid_cost = valid_cost / valid_count
|
|
train_cost = train_cost / train_count
|
|
word_error_rate = 1 - (all_corrects / all_overall)
|
|
|
|
if not np.isnan(valid_cost): # checks NAN
|
|
|
|
save_path = saver.save(sess,
|
|
os.path.join(sp.session_dir, "model_dump_{}.ckpt".format(e))) # dumps model weights
|
|
|
|
if analyse: # if analysis, it logs memory influence and plots functionality
|
|
|
|
controller_inf = []
|
|
memory_inf = []
|
|
all_corrects = 0
|
|
all_overall = 0
|
|
|
|
for vstep in range(
|
|
10): # makes ten valid inferneces to get the gradiens for memory influence calculation
|
|
vsample = next(valid_loader)
|
|
|
|
analyse_values, prediction, gradients = sess.run(
|
|
[model.analyse, model.prediction, trainer.gradients],
|
|
feed_dict={data: vsample['x'], target: vsample['y'], mask: vsample['m']})
|
|
weights = {v.name: {'var': g[1], 'grad': g[0], 'shape': g[0].shape} for v, g in
|
|
zip(model.trainable_variables, gradients)}
|
|
if 'x_word' not in vsample.keys():
|
|
vsample['x_word'] = np.transpose(np.argmax(vsample['x'], axis=-1), (1, 0))
|
|
data_sample = [vsample['x'], vsample['y'], vsample['m'], vsample['x_word'], ]
|
|
|
|
decoded_targets, decoded_predictions = dl.decode_output(vsample, prediction)
|
|
|
|
save_list = [analyse_values, prediction, decoded_predictions, data_sample, weights]
|
|
|
|
co_inf, mu_inf = ana.feed_variables_two(save_list, e, name="states_epoch",
|
|
save_plot=vstep) # calculates the memory influence
|
|
controller_inf.append(co_inf)
|
|
memory_inf.append(mu_inf)
|
|
|
|
controller_inf = np.mean(controller_inf)
|
|
memory_inf = np.mean(memory_inf)
|
|
|
|
writer.add_summary(tf.Summary(value=[tf.Summary.Value(tag='wer', simple_value=word_error_rate)]),
|
|
e * dl.batch_amount('train') + step)
|
|
writer.add_summary(
|
|
tf.Summary(value=[tf.Summary.Value(tag='controller_inf', simple_value=controller_inf)]),
|
|
e * dl.batch_amount('train') + step)
|
|
writer.add_summary(tf.Summary(value=[tf.Summary.Value(tag='memory_inf', simple_value=memory_inf)]),
|
|
e * dl.batch_amount('train') + step)
|
|
|
|
sp.pub(
|
|
"epoch {:3}, step {:5}, train cost {:4.3f}, valid cost {:4.3f}, wer {:4.3f}, controller influence {:4.3f}, "
|
|
"memory influence {:4.3f}, duration {:5.1f}sec, time: {}, Model saved in {}".format(
|
|
e, step, train_cost, valid_cost, word_error_rate, controller_inf, memory_inf,
|
|
time.time() - time_0, sp.time_stamp(), save_path))
|
|
sp.monitor(["epoch", "step", "train cost", "valid cost", "duration", "controller influence",
|
|
"memory influence", "wer"],
|
|
[e, step, train_cost, valid_cost, time.time() - time_0, controller_inf, memory_inf,
|
|
word_error_rate]) # saves the values in an numpy array for later analysis
|
|
else:
|
|
sp.pub(
|
|
"epoch {:3}, step {:5}, train cost {:4.3f}, valid cost {:4.3f}, duration {:5.1f}sec, time: {}, Model saved in {}".format(
|
|
e, step, train_cost, valid_cost, time.time() - time_0, sp.time_stamp(), save_path))
|
|
sp.monitor(["epoch", "step", "train cost", "valid cost", "duration"],
|
|
[e, step, train_cost, valid_cost, time.time() - time_0])
|
|
else:
|
|
sp.pub("ERROR: nan in training")
|
|
sys.exit("NAN") # end training in case of NAN
|
|
|
|
if early_stop(valid_cost):
|
|
sp.pub("EARLYSTOP: valid error increase")
|
|
sys.exit("EARLYSTOP") # end training when valid loss increases, early stopping
|