# Advanced Differentiable Neural Computer [![Build Status](https://travis-ci.org/joergfranke/ADNC.svg?branch=master)](https://travis-ci.org/joergfranke/ADNC) [![Python](https://img.shields.io/badge/python-3.5+-yellow.svg)](https://www.python.org/downloads/release/python-365/) [![TensorFLow](https://img.shields.io/badge/TensorFlow-1.8-yellow.svg)](https://www.tensorflow.org/) This repository contains a implementation of a Differentiable Neural Computer (DNC) with advancements for a more robust and scalable usage in Question Answering. It is applied to: - [20 bAbI QA tasks](https://research.fb.com/downloads/babi/) with [state-of-the-art results](#babi-results) - [CNN Reading Comprehension Task](https://github.com/danqi/rc-cnn-dailymail) with [passable results](#cnn-results) without any adaptation or hyper-parameter tuning. This repository is the groundwork for the MRQA 2018 paper submission "Robust and Scalable Differentiable Neural Computer for Question Answering". It contains a modular and fully configurable DNC with the following advancements:
drawing drawing drawing drawing
Bypass Dropout DNC Normalization Content Based Memory Unit Bidirectional Controller
  • Dropout to reduce the bypass connectivity
  • Forces an earlier memory usage during training
  • Normalizes the memory unit's input
  • Increases the model stability during training
  • Memory Unit without temporal linkage mechanism
  • Reduces memory consumption by up to 70
  • Bidirectional DNC Architecture
  • Allows to handle variable requests and rich information extraction
The plot below shows the impact of the different advancements in the word error rate with the bAbI task 1. | ![diff_advancements](images/diff_advancements.png) | |----| Furthermore, it contains a set of rich analysis tools to get a deeper insight in the functionality of the ADNC. For example that the advancements lead to a more meaningful gate usage of the memory cell as you can see in the following plots: | ![process_dnc](images/function_DNC_2.png) | ![process_adnc](images/function_ADNC_2.png) | |---|---| ## How to use: ### Setup ADNC To setup an virtual environment and install ADNC: ``` git clone https://github.com/joergfranke/ADNC.git cd ADNC/ python3 -m venv venv source venv/bin/activate pip install -e . ``` ### Inference The repository contains different pre-trained models in the experiments folder. For __bAbI inference__, choose pre-trained model e.g. `adnc` and run: `python scripts/inference_babi_task.py adnc` Possible models are `dnc`, `adnc`, `biadnc` on bAbi Task 1 and `biadnc-all`, `biadnc-aug16-all` for all bAbI tasks with or without augmentation of task 16. For __CNN inference__ of pre-trained ADNC run: `python scripts/inference_babi_task.py` ### Training The configuration file `scripts/config.yml` contains the full config of the ADNC training. The training script can be run with: `python scripts/start/training.py` It starts a bAbI training and plots every epoch a function plot to control the training progress. ### Plots To plot a function plot of the bAbI task -> t.b.a. `python scripts/plot_function_babi_task.py` ## bAbI Results | Task | DNC | EntNet | SDNC | ADNC | BiADNC | BiADNC
+aug16| |----------------------------------|-----------------|------------------------|------------------------|------------------------|------------------------|--------------------------------------------------------| | 1: 1 supporting fact | 9.0 ± 12.6 | 0.0 ± 0.1 | 0.0 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.1 | 0.1 ± 0.0 | | 2: 2 supporting facts | 39.2 ± 20.5 | 15.3 ± 15.7 | 7.1 ± 14.6 | 0.8 ± 0.5 | 0.8 ± 0.2 | 0.5 ± 0.2 | | 3: 3 supporting facts | 39.6 ± 16.4 | 29.3 ± 26.3 | 9.4 ± 16.7 | 6.5 ± 4.6 | 2.4 ± 0.6 | 1.6 ± 0.8 | | 4: 2 argument relations | 0.4 ± 0.7 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | | 5: 3 argument relations | 1.5 ± 1.0 | 0.4 ± 0.3 | 0.9 ± 0.3 | 1.0 ± 0.4 | 0.7 ± 0.1 | 0.8 ± 0.4 | | 6: yes/no questions | 6.9 ± 7.5 | 0.6 ± 0.8 | 0.1 ± 0.2 | 0.0 ± 0.1 | 0.0 ± 0.0 | 0.0 ± 0.0 | | 7: counting | 9.8 ± 7.0 | 1.8 ± 1.1 | 1.6 ± 0.9 | 1.0 ± 0.7 | 1.0 ± 0.5 | 1.0 ± 0.7 | | 8: lists/sets | 5.5 ± 5.9 | 1.5 ± 1.2 | 0.5 ± 0.4 | 0.2 ± 0.2 | 0.5 ± 0.3 | 0.6 ± 0.3 | | 9: simple negation | 7.7 ± 8.3 | 0.0 ± 0.1 | 0.0 ± 0.1 | 0.0 ± 0.0 | 0.1 ± 0.2 | 0.0 ± 0.0 | | 10: indefinite knowledge | 9.6 ± 11.4 | 0.1 ± 0.2 | 0.3 ± 0.2 | 0.1 ± 0.2 | 0.0 ± 0.0 | 0.0 ± 0.1 | | 11: basic coreference | 3.3 ± 5.7 | 0.2 ± 0.2 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | | 12: conjunction | 5 ± 6.3 | 0.0 ± 0.0 | 0.2 ± 0.3 | 0.0 ± 0.0 | 0.0 ± 0.1 | 0.0 ± 0.0 | | 13: compound coreference | 3.1 ± 3.6 | 0.0 ± 0.1 | 0.1 ± 0.1 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.0 ± 0.0 | | 14: time reasoning | 11 ± 7.5 | 7.3 ± 4.5 | 5.6 ± 2.9 | 0.2 ± 0.1 | 0.8 ± 0.7 | 0.3 ± 0.1 | | 15: basic deduction | 27.2 ± 20.1 | 3.6 ± 8.1 | 3.6 ± 10.3 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | | 16: basic induction | 53.6 ± 1.9 | 53.3 ± 1.2 | 53.0 ± 1.3 | 52.1 ± 0.9 | 52.6 ± 1.6 | 0.0 ± 0.0 | | 17: positional reasoning | 32.4 ± 8 | 8.8 ± 3.8 | 12.4 ± 5.9 | 18.5 ± 8.8 | 4.8 ± 4.8 | 1.5 ± 1.8 | | 18: size reasoning | 4.2 ± 1.8 | 1.3 ± 0.9 | 1.6 ± 1.1 | 1.1 ± 0.5 | 0.4 ± 0.4 | 0.9 ± 0.5 | | 19: path finding | 64.6 ± 37.4 | 70.4 ± 6.1 | 30.8 ± 24.2 | 43.3 ± 36.7 | 0.0 ± 0.0 | 0.1 ± 0.1 | | 20: agent’s motivation | 0.0 ± 0.1 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 | | __Mean WER:__ | 16.7 ± 7.6 | 9.7 ± 2.6 | 6.4 ± 2.5 | 6.3 ± 2.7 | 3.2 ± 0.5 | 0.4 ± 0.3 | | __Failed Tasks (<5%):__ | 11.2 ± 5.4 | 5.0 ± 1.2 | 4.1 ± 1.6 | 3.2 ± 0.8 | 1.4 ± 0.5 | 0.0 ± 0.0 | ## CNN Results | Model | valid | test | |:-----------------|:-----:|:----:| | Deep LSTM Reader | 55.0 | 57.0 | | Attentive Reader | 61.6 | 63.0 | | __ADNC__ | 67.5 | 69.0 | | AS Reader | 68.6 | 69.5 | | Stanford AR | 72.2 | 72.4 | | AoA Reader | 73.1 | 74.4 | | ReasoNet | 72.9 | 74.7 | | GA Reader | 77.9 | 77.9 |