mirror of
https://github.com/JoergFranke/ADNC.git
synced 2024-11-17 13:58:03 +08:00
add 'how to' to README
This commit is contained in:
parent
9aeb5a21f1
commit
c9e8029b28
56
README.md
56
README.md
@ -4,15 +4,11 @@
|
||||
[![Python](https://img.shields.io/badge/python-3.5+-yellow.svg)](https://www.python.org/downloads/release/python-365/)
|
||||
[![TensorFLow](https://img.shields.io/badge/TensorFlow-1.8-yellow.svg)](https://www.tensorflow.org/)
|
||||
|
||||
|
||||
*THIS REPOSITORY IS IN CONSTRUCTION, NOT EVERYTHING IS WORKING FINE YET*
|
||||
|
||||
This repository contains a implementation of a Differentiable Neural Computer (DNC) with advancements for a more robust and
|
||||
scalable usage in Question Answering. It is applied to:
|
||||
|
||||
- [20 bAbI QA tasks](https://research.fb.com/downloads/babi/) with [state-of-the-art results](#babi-results)
|
||||
- [CNN Reading Comprehension Task](https://github.com/danqi/rc-cnn-dailymail) with
|
||||
passable results without any adaptation.
|
||||
[passable results](#cnn-results) without any adaptation or hyper-parameter tuning.
|
||||
|
||||
This repository is the groundwork for the MRQA 2018
|
||||
paper submission "Robust and Scalable Differentiable Neural Computer for Question Answering". It contains a modular and
|
||||
@ -41,7 +37,7 @@ fully configurable DNC with the following advancements:
|
||||
</td>
|
||||
<td>
|
||||
<ul>
|
||||
<li>Normalizes the memory unit's input %like layer normalization</li>
|
||||
<li>Normalizes the memory unit's input</li>
|
||||
<li>Increases the model stability during training</li>
|
||||
</ul>
|
||||
</td>
|
||||
@ -68,11 +64,11 @@ The plot below shows the impact of the different advancements in the word error
|
||||
|
||||
|
||||
Furthermore, it contains a set of rich analysis tools to get a deeper insight in the functionality of the ADNC. For example
|
||||
that the advancements lead to a more meaningful gate usage of the memory cell.
|
||||
that the advancements lead to a more meaningful gate usage of the memory cell as you can see in the following plots:
|
||||
|
||||
|
||||
|DNC|ADNC|
|
||||
|---|---|
|
||||
| ![process_dnc](images/function_DNC_2.png) | ![process_adnc](images/function_ADNC_2.png) |
|
||||
|---|---|
|
||||
|
||||
|
||||
|
||||
@ -80,7 +76,7 @@ that the advancements lead to a more meaningful gate usage of the memory cell.
|
||||
|
||||
### Setup ADNC
|
||||
|
||||
To install ADNC and setup an virtual environment:
|
||||
To setup an virtual environment and install ADNC:
|
||||
```
|
||||
git clone https://github.com/joergfranke/ADNC.git
|
||||
cd ADNC/
|
||||
@ -91,32 +87,37 @@ pip install -e .
|
||||
|
||||
### Inference
|
||||
|
||||
For bAbI inference, choose pre-trained model (DNC, ADNC, BiADNC) in `scripts/inference_babi_task.py` and run:
|
||||
The repository contains different pre-trained models in the experiments folder.
|
||||
For __bAbI inference__, choose pre-trained model e.g. adnc and run:
|
||||
|
||||
`python scripts/inference_babi_task.py adnc`
|
||||
|
||||
Possible models are `dnc`, `adnc`, `biadnc` on bAbi Task 1 and `biadnc-all`, `biadnc-aug16-all` for all bAbI tasks with or without augmentation of task 16.
|
||||
|
||||
For __CNN inference__ of pre-trained ADNC and run:
|
||||
|
||||
`python scripts/inference_babi_task.py`
|
||||
|
||||
For CNN inference, choose pre-trained model (ADNC, BiADNC) in `scripts/inference_cnn_task.py` and run:
|
||||
|
||||
`python scripts/inference_babi_task.py`
|
||||
|
||||
### Training
|
||||
|
||||
t.b.a.
|
||||
The configuration file `scripts/config.yml` contains the full config of the ADNC training. The training script can be run with:
|
||||
|
||||
`python scripts/start/training.py`
|
||||
|
||||
It starts a bAbI training and plots every epoch a function plot to control the training progress.
|
||||
|
||||
### Plots
|
||||
|
||||
t.b.a.
|
||||
To plot a function plot of the bAbI task -> t.b.a.
|
||||
|
||||
`python scripts/plot_function_babi_task.py`
|
||||
|
||||
## Repository Structure
|
||||
|
||||
t.b.a.
|
||||
|
||||
|
||||
|
||||
## bAbI Results
|
||||
|
||||
|
||||
| Task | DNC | EntNet | SDNC | ADNC | BiADNC | BiADNC<br>+aug16|
|
||||
|----------------------------------|-----------------|------------------------|------------------------|------------------------|------------------------|--------------------------------------------------------|
|
||||
| 1: 1 supporting fact | 9.0 ± 12.6 | 0.0 ± 0.1 | 0.0 ± 0.0 | 0.1 ± 0.0 | 0.1 ± 0.1 | 0.1 ± 0.0 |
|
||||
@ -140,4 +141,17 @@ t.b.a.
|
||||
| 19: path finding | 64.6 ± 37.4 | 70.4 ± 6.1 | 30.8 ± 24.2 | 43.3 ± 36.7 | 0.0 ± 0.0 | 0.1 ± 0.1 |
|
||||
| 20: agent’s motivation | 0.0 ± 0.1 | 0.0 ± 0.0 | 0.0 ± 0.0 | 0.1 ± 0.1 | 0.1 ± 0.1 | 0.1 ± 0.1 |
|
||||
| __Mean WER:__ | 16.7 ± 7.6 | 9.7 ± 2.6 | 6.4 ± 2.5 | 6.3 ± 2.7 | 3.2 ± 0.5 | 0.4 ± 0.3 |
|
||||
| __Failed Tasks (<5%):__ | 11.2 ± 5.4 | 5.0 ± 1.2 | 4.1 ± 1.6 | 3.2 ± 0.8 | 1.4 ± 0.5 | 0.0 ± 0.0 |
|
||||
| __Failed Tasks (<5%):__ | 11.2 ± 5.4 | 5.0 ± 1.2 | 4.1 ± 1.6 | 3.2 ± 0.8 | 1.4 ± 0.5 | 0.0 ± 0.0 |
|
||||
|
||||
## CNN Results
|
||||
|
||||
| Model | valid | test |
|
||||
|:-----------------|:-----:|:----:|
|
||||
| Deep LSTM Reader | 55.0 | 57.0 |
|
||||
| Attentive Reader | 61.6 | 63.0 |
|
||||
| __ADNC__ | 67.5 | 69.0 |
|
||||
| AS Reader | 68.6 | 69.5 |
|
||||
| Stanford AR | 72.2 | 72.4 |
|
||||
| AoA Reader | 73.1 | 74.4 |
|
||||
| ReasoNet | 72.9 | 74.7 |
|
||||
| GA Reader | 77.9 | 77.9 |
|
Loading…
Reference in New Issue
Block a user