add pre trained models and inference babi task script

This commit is contained in:
Joerg Franke 2018-06-25 13:47:57 +02:00
parent ce06bdba9a
commit 88bbe5f5aa
16 changed files with 434 additions and 0 deletions

View File

@ -0,0 +1,58 @@
#######################################
### Global Configuration ###
#######################################
global:
batch_size: &batch_size 32
#######################################
### Training Configuration ###
#######################################
training:
epochs: 75
learn_rate: 0.0001
optimizer: 'rmsprop'
optimizer_config: {'momentum':0.9}
gradient_clipping: 10
weight_decay: False
#######################################
### MANN Configuration ###
#######################################
mann:
name: 'mann1'
seed: 987
input_size: 0
output_size: 0
batch_size: *batch_size
input_embedding: False
architecture: 'uni'
controller_config: {"num_units":[64], "layer_norm":True, "activation":'tanh', 'cell_type':'clstm', 'connect':'sparse', 'attention':False}
memory_unit_config: {"cell_type":'cbmu', "memory_length":128, "memory_width":32, "read_heads":2, "write_heads": 1, "dnc_norm":True, "bypass_dropout":0.8}
output_function: "softmax"
output_mask: True
loss_function: 'cross_entropy'
###################################################################
####### bAbI QA Task ######
###################################################################
babi_task:
data_set: 'babi'
load_test: True
load_vocab: True
seed: 212
valid_ratio: 0.1 # like nature paper
batch_size: *batch_size
max_len: 500
set_type: ['en-10k']
task_selection: [1]
num_chached: 5
threads: 1

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:3977630485b36af3ab58f9b8cf29f6f12a934f055c3821710a62785b5138aae3
size 639880

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:9ffc1a056f5937cc6d44f75ae147894093e4fd6a41ddc11559773746a442bfb1
size 1415

View File

@ -0,0 +1,58 @@
#######################################
### Global Configuration ###
#######################################
global:
batch_size: &batch_size 32
#######################################
### Training Configuration ###
#######################################
training:
epochs: 75
learn_rate: 0.0001
optimizer: 'rmsprop'
optimizer_config: {'momentum':0.9}
gradient_clipping: 10
weight_decay: False
#######################################
### MANN Configuration ###
#######################################
mann:
name: 'mann1'
seed: 347
input_size: 0
output_size: 0
batch_size: *batch_size
input_embedding: False
architecture: 'bi'
controller_config: {"num_units":[32], "layer_norm":True, "activation":'tanh', 'cell_type':'clstm', 'connect':'sparse', 'attention':False}
memory_unit_config: {"cell_type":'cbmu', "memory_length":128, "memory_width":32, "read_heads":2, "write_heads": 1, "dnc_norm":True, "bypass_dropout":0.8}
output_function: "softmax"
output_mask: True
loss_function: 'cross_entropy'
###################################################################
####### bAbI QA Task ######
###################################################################
babi_task:
data_set: 'babi'
load_test: True
load_vocab: True
seed: 212
valid_ratio: 0.1 # like nature paper
batch_size: *batch_size
max_len: 500
set_type: ['en-10k']
task_selection: [1]
num_chached: 5
threads: 1

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:892ab8c61d529470ccf7965cfc02f00799a69efced7a01501a900dc7ce904b4c
size 443272

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:a196248ae95aa28f1d719f1ad16f9831a14a0694f30c95a7eab24e159553a216
size 2114

View File

@ -0,0 +1,57 @@
#######################################
### Global Configuration ###
#######################################
global:
batch_size: &batch_size 32
#######################################
### Training Configuration ###
#######################################
training:
epochs: 75
learn_rate: 0.0001
optimizer: 'rmsprop'
optimizer_config: {'momentum':0.9}
gradient_clipping: 10
weight_decay: False
#######################################
### MANN Configuration ###
#######################################
mann:
name: 'mann1'
seed: 148
input_size: 0
output_size: 0
batch_size: *batch_size
input_embedding: False
architecture: 'uni'
controller_config: {"num_units":[64], "layer_norm":True, "activation":'tanh', 'cell_type':'clstm', 'connect':'sparse', 'attention':False}
memory_unit_config: {"cell_type":'dnc', "memory_length":128, "memory_width":32, "read_heads":2, "write_heads": 1, "dnc_norm":False, "bypass_dropout":False}
output_function: "softmax"
output_mask: True
loss_function: 'cross_entropy'
###################################################################
####### bAbI QA Task ######
###################################################################
babi_task:
data_set: 'babi'
load_test: True
load_vocab: True
seed: 212
valid_ratio: 0.1 # like nature paper
batch_size: *batch_size
max_len: 500
set_type: ['en-10k']
task_selection: [1]
num_chached: 5
threads: 1

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:dd7d2f452ce5248b102b78a9aad31af1bc49ee296c883d311dd629601904415b
size 640552

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:5ab09c717bfcd1aa920429444da94fc7bfd132b12ad3faa0d5b96e52b40a7f76
size 1224

View File

@ -0,0 +1,57 @@
#######################################
### Global Configuration ###
#######################################
global:
batch_size: &batch_size 32
#######################################
### Training Configuration ###
#######################################
training:
epochs: 100
learn_rate: 0.00003
optimizer: 'rmsprop' # rmsprop,
optimizer_config: {'momentum':0.9}
gradient_clipping: 10
weight_decay: False
#######################################
### MANN Configuration ###
#######################################
mann:
name: 'mann1'
seed: 486
input_size: 0
output_size: 0
batch_size: *batch_size
input_embedding: False
architecture: 'bi'
controller_config: {"num_units":[172], "layer_norm":True, "activation":'tanh', 'cell_type':'clstm', 'connect':'sparse', 'attention':False}
memory_unit_config: {"cell_type":'cbmu', "memory_length":192, "memory_width":64, "read_heads":4, "write_heads": 1, "dnc_norm":True, "bypass_dropout":0.9, "wgate1":False}
output_function: "softmax"
output_mask: True
loss_function: 'cross_entropy'
bw_input_fw: False
###################################################################
####### bAbI QA Task ######
###################################################################
babi_task:
data_set: 'babi'
load_test: True
load_vocab: True
seed: 325
valid_ratio: 0.1 # like nature paper
batch_size: *batch_size
max_len: 1000
set_type: ['en-10k']
task_selection: ['all']
augment16: True
num_chached: 5
threads: 1

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:1832374db1174765e6c568aa9374861de3cd8211e1dd877cb5177e5c69c6248d
size 10694788

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:54958b109d55105fdc6d6a1660b6645bd7ff65f4abee0f322c9572349fc03b5a
size 2178

View File

@ -0,0 +1,59 @@
#######################################
### Global Configuration ###
#######################################
global:
batch_size: &batch_size 32
#######################################
### Training Configuration ###
#######################################
training:
epochs: 50
learn_rate: 0.00003
optimizer: 'rmsprop' # rmsprop,
optimizer_config: {'momentum':0.9}
gradient_clipping: 10
weight_decay: False
#######################################
### MANN Configuration ###
#######################################
mann:
name: 'mann1'
seed: 857
input_size: 0
output_size: 0
batch_size: *batch_size
input_embedding: False
architecture: 'bi'
controller_config: {"num_units":[172], "layer_norm":True, "activation":'tanh', 'cell_type':'clstm', 'connect':'sparse', 'attention':False}
memory_unit_config: {"cell_type":'cbmu', "memory_length":128, "memory_width":64, "read_heads":4, "write_heads": 1, "dnc_norm":True, "bypass_dropout":0.9}
output_function: "softmax"
output_mask: True
loss_function: 'cross_entropy'
###################################################################
####### bAbI QA Task ######
###################################################################
babi_task:
data_set: 'babi'
load_test: True
load_vocab: True
seed: 211
valid_ratio: 0.1 # like nature paper
batch_size: *batch_size
max_len: 500
set_type: ['en-10k']
task_selection: ['all']
num_chached: 5
threads: 1

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:ed6300bfd665a00fb74537d88cbb7559e1f2378d00f552e1ed016bfc60d17c6d
size 10694788

View File

@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:30495139bd63fa8c62b5e92789bbf2e268bbc32c8fc57aa86e8e17175a7c5484
size 2178

115
inference_babi_task.py Executable file
View File

@ -0,0 +1,115 @@
# Copyright 2018 Jörg Franke
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import os
os.environ["CUDA_VISIBLE_DEVICES"]="" #gpu not required for inference
import yaml
import numpy as np
import tensorflow as tf
from adnc.data.loader import DataLoader
from adnc.model.mann import MANN
# Choose a pre trained model by uncomment
# expt_dir = "experiments/pre_trained/babi_task_1/dnc" # DNC trained on bAbI tasks 1
# expt_dir = "experiments/pre_trained/babi_task_1/adnc" # ADNC trained on bAbI tasks 1
# expt_dir = "experiments/pre_trained/babi_task_1/biadnc" # BiADNC trained on bAbI tasks 1
# expt_dir = "experiments/pre_trained/babi_task_all/biadnc" # BiADNC trained on all bAbI tasks
expt_dir = "experiments/pre_trained/babi_task_all/biadnc_aug16" # BiADNC trained on all bAbI tasks with task 16 augmentation
config_file = 'config.yml'
with open(os.path.join(expt_dir, config_file) , 'r') as f:
configs = yaml.load(f) # load config from file
dataset_config = configs['babi_task']
model_config = configs['mann']
dataset_config['batch_size'] = 1
model_config['batch_size'] = 1
dataset_config['threads'] = 1 # only one thread for data loading
dataset_config['max_len'] = 1921 # set max length to maximal
dataset_config['augment16'] = False # disable augmentation for inference
if dataset_config['task_selection'] == ['all']:
task_list = [i+1 for i in range(20)]
else:
task_list = [int(i) for i in dataset_config['task_selection']]
dl = DataLoader(dataset_config) # load data loader by config
model_config['input_size'] = dl.x_size # add data size to model config
model_config['output_size'] = dl.y_size
model_config['memory_unit_config']['bypass_dropout'] = False # no dropout during inference
model = MANN(model_config) # load memory augmented neural network model
data, target, mask = model.feed # create data feed for session run
word_dict = dl.dataset.word_dict # full dictionary of all tasks
re_word_dict = dl.dataset.re_word_dict # reverse dictionary
print("vocabulary size: {}".format(dl.vocabulary_size))
print("train set length: {}".format(dl.sample_amount('train')))
print("valid set length: {}".format(dl.sample_amount('valid')))
print("model parameter amount: {}".format(model.parameter_amount))
saver = tf.train.Saver()
conf = tf.ConfigProto()
conf.gpu_options.per_process_gpu_memory_fraction = 0.8
conf.gpu_options.allocator_type = 'BFC'
conf.gpu_options.allow_growth = True
with tf.Session(config=conf) as sess:
saver.restore(sess, os.path.join(expt_dir, "model_dump.ckpt"))
mean_error = []
for task in task_list:
# load data loader for task
dataset_config['task_selection'] = [task]
dl = DataLoader(dataset_config, word_dict, re_word_dict)
valid_loader = dl.get_data_loader('test')
predictions, targets, masks = [], [], []
all_corrects, all_overall = 0, 0
# infer model
for v in range(int(dl.batch_amount('test'))):
sample = next(valid_loader)
prediction = sess.run([model.prediction, ],feed_dict={data: sample['x'],
target: sample['y'],
mask: sample['m']})
predictions.append(prediction)
targets.append(sample['y'])
masks.append(sample['m'])
# calculate mean error rate for task
for p, t, m in zip(predictions, targets, masks):
tm = np.argmax(t, axis=-1)
pm = np.argmax(p, axis=-1)
corrects = np.equal(tm, pm)
all_corrects += np.sum(corrects * m)
all_overall += np.sum(m)
word_error_rate = 1- (all_corrects/all_overall)
mean_error.append(word_error_rate)
print("word error rate task {:2}: {:0.3}".format(task, word_error_rate))
print("mean word error rate : {:0.3}".format(np.mean(mean_error)))