pytorch-sentiment-analysis/experimental/2_rnn_gru.ipynb

1121 lines
30 KiB
Plaintext

{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 228
},
"colab_type": "code",
"id": "lIYdn1woOS1n",
"outputId": "05f43a3e-f111-4f96-ee3e-d95027c041c8"
},
"outputs": [],
"source": [
"import torch\n",
"import torch.nn as nn\n",
"import torch.optim as optim\n",
"\n",
"import torchtext\n",
"import torchtext.experimental\n",
"import torchtext.experimental.vectors\n",
"from torchtext.experimental.datasets.raw.text_classification import RawTextIterableDataset\n",
"from torchtext.experimental.datasets.text_classification import TextClassificationDataset\n",
"from torchtext.experimental.functional import sequential_transforms, vocab_func, totensor\n",
"\n",
"import collections\n",
"import random\n",
"import time"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "kjHAEB8BKbEY"
},
"outputs": [],
"source": [
"seed = 1234\n",
"\n",
"torch.manual_seed(seed)\n",
"random.seed(seed)\n",
"torch.backends.cudnn.deterministic = True\n",
"torch.backends.cudnn.benchmark = False"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "HRkCva2fJ_kr"
},
"outputs": [],
"source": [
"raw_train_data, raw_test_data = torchtext.experimental.datasets.raw.IMDB()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "RkgVHXXSKAyU"
},
"outputs": [],
"source": [
"def get_train_valid_split(raw_train_data, split_ratio = 0.7):\n",
"\n",
" raw_train_data = list(raw_train_data)\n",
" \n",
" random.shuffle(raw_train_data)\n",
" \n",
" n_train_examples = int(len(raw_train_data) * split_ratio)\n",
" \n",
" train_data = raw_train_data[:n_train_examples]\n",
" valid_data = raw_train_data[n_train_examples:]\n",
" \n",
" train_data = RawTextIterableDataset(train_data)\n",
" valid_data = RawTextIterableDataset(valid_data)\n",
" \n",
" return train_data, valid_data"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "T5fGSB1OKC77"
},
"outputs": [],
"source": [
"raw_train_data, raw_valid_data = get_train_valid_split(raw_train_data)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "zvcEouXQLmHz"
},
"outputs": [],
"source": [
"class Tokenizer:\n",
" def __init__(self, tokenize_fn = 'basic_english', lower = True, max_length = None):\n",
" \n",
" self.tokenize_fn = torchtext.data.utils.get_tokenizer(tokenize_fn)\n",
" self.lower = lower\n",
" self.max_length = max_length\n",
" \n",
" def tokenize(self, s):\n",
" \n",
" tokens = self.tokenize_fn(s)\n",
" \n",
" if self.lower:\n",
" tokens = [token.lower() for token in tokens]\n",
" \n",
" if self.max_length is not None:\n",
" tokens = tokens[:self.max_length]\n",
" \n",
" return tokens"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "dnpijQRFLnXV"
},
"outputs": [],
"source": [
"max_length = 500\n",
"\n",
"tokenizer = Tokenizer(max_length = max_length)"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "VOl6UxZoLdg_"
},
"outputs": [],
"source": [
"def build_vocab_from_data(raw_data, tokenizer, **vocab_kwargs):\n",
" \n",
" token_freqs = collections.Counter()\n",
" \n",
" for label, text in raw_data:\n",
" tokens = tokenizer.tokenize(text)\n",
" token_freqs.update(tokens)\n",
" \n",
" vocab = torchtext.vocab.Vocab(token_freqs, **vocab_kwargs)\n",
" \n",
" return vocab"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "eNLrpvt2Lgsr"
},
"outputs": [],
"source": [
"max_size = 25_000\n",
"\n",
"vocab = build_vocab_from_data(raw_train_data, tokenizer, max_size = max_size)"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "AN1YQiYfLr0_"
},
"outputs": [],
"source": [
"def process_raw_data(raw_data, tokenizer, vocab):\n",
" \n",
" raw_data = [(label, text) for (label, text) in raw_data]\n",
"\n",
" text_transform = sequential_transforms(tokenizer.tokenize,\n",
" vocab_func(vocab),\n",
" totensor(dtype=torch.long))\n",
" \n",
" label_transform = sequential_transforms(totensor(dtype=torch.long))\n",
"\n",
" transforms = (label_transform, text_transform)\n",
"\n",
" dataset = TextClassificationDataset(raw_data,\n",
" vocab,\n",
" transforms)\n",
" \n",
" return dataset"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "dlejEwWLMScW"
},
"outputs": [],
"source": [
"train_data = process_raw_data(raw_train_data, tokenizer, vocab)\n",
"valid_data = process_raw_data(raw_valid_data, tokenizer, vocab)\n",
"test_data = process_raw_data(raw_test_data, tokenizer, vocab)"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "hggYldmOQahU"
},
"outputs": [],
"source": [
"class Collator:\n",
" def __init__(self, pad_idx):\n",
" \n",
" self.pad_idx = pad_idx\n",
" \n",
" def collate(self, batch):\n",
" \n",
" labels, text = zip(*batch)\n",
" \n",
" labels = torch.LongTensor(labels)\n",
" \n",
" lengths = torch.LongTensor([len(x) for x in text])\n",
"\n",
" text = nn.utils.rnn.pad_sequence(text, padding_value = self.pad_idx)\n",
" \n",
" return labels, text, lengths"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "gw4LBXWAQiEC"
},
"outputs": [],
"source": [
"pad_token = '<pad>'\n",
"pad_idx = vocab[pad_token]\n",
"\n",
"collator = Collator(pad_idx)"
]
},
{
"cell_type": "code",
"execution_count": 14,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "d0dP9wnZQjaU"
},
"outputs": [],
"source": [
"batch_size = 256\n",
"\n",
"train_iterator = torch.utils.data.DataLoader(train_data, \n",
" batch_size, \n",
" shuffle = True, \n",
" collate_fn = collator.collate)\n",
"\n",
"valid_iterator = torch.utils.data.DataLoader(valid_data, \n",
" batch_size, \n",
" shuffle = False, \n",
" collate_fn = collator.collate)\n",
"\n",
"test_iterator = torch.utils.data.DataLoader(test_data, \n",
" batch_size, \n",
" shuffle = False, \n",
" collate_fn = collator.collate)"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [],
"source": [
"class GRU(nn.Module):\n",
" def __init__(self, input_dim, emb_dim, hid_dim, output_dim, pad_idx):\n",
" super().__init__()\n",
"\n",
" self.embedding = nn.Embedding(input_dim, emb_dim, padding_idx = pad_idx)\n",
" self.gru = nn.GRUCell(emb_dim, hid_dim)\n",
" self.fc = nn.Linear(hid_dim, output_dim)\n",
"\n",
" def forward(self, text, lengths):\n",
"\n",
" # text = [seq len, batch size]\n",
" # lengths = [batch size]\n",
"\n",
" embedded = self.embedding(text)\n",
"\n",
" # embedded = [seq len, batch size, emb dim]\n",
"\n",
" seq_len, batch_size, _ = embedded.shape\n",
" hid_dim = self.gru.hidden_size\n",
" \n",
" hidden = torch.zeros(batch_size, hid_dim).to(embedded.device)\n",
" \n",
" for i in range(seq_len):\n",
" x = embedded[i]\n",
" hidden = self.gru(x, hidden)\n",
" \n",
" prediction = self.fc(hidden)\n",
"\n",
" # prediction = [batch size, output dim]\n",
"\n",
" return prediction"
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [],
"source": [
"class GRU(nn.Module):\n",
" def __init__(self, input_dim, emb_dim, hid_dim, output_dim, pad_idx):\n",
" super().__init__()\n",
"\n",
" self.embedding = nn.Embedding(input_dim, emb_dim, padding_idx = pad_idx)\n",
" self.gru = nn.GRU(emb_dim, hid_dim)\n",
" self.fc = nn.Linear(hid_dim, output_dim)\n",
"\n",
" def forward(self, text, lengths):\n",
"\n",
" # text = [seq len, batch size]\n",
" # lengths = [batch size]\n",
"\n",
" embedded = self.embedding(text)\n",
"\n",
" # embedded = [seq len, batch size, emb dim]\n",
"\n",
" output, hidden = self.gru(embedded)\n",
"\n",
" # output = [seq_len, batch size, n directions * hid dim]\n",
" # hidden = [n layers * n directions, batch size, hid dim]\n",
"\n",
" prediction = self.fc(hidden.squeeze(0))\n",
"\n",
" # prediction = [batch size, output dim]\n",
"\n",
" return prediction "
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "LGQ5JkfBQll0"
},
"outputs": [],
"source": [
"class GRU(nn.Module):\n",
" def __init__(self, input_dim, emb_dim, hid_dim, output_dim, pad_idx):\n",
" super().__init__()\n",
"\n",
" self.embedding = nn.Embedding(input_dim, emb_dim, padding_idx = pad_idx)\n",
" self.gru = nn.GRU(emb_dim, hid_dim)\n",
" self.fc = nn.Linear(hid_dim, output_dim)\n",
"\n",
" def forward(self, text, lengths):\n",
"\n",
" # text = [seq len, batch size]\n",
" # lengths = [batch size]\n",
"\n",
" embedded = self.embedding(text)\n",
"\n",
" # embedded = [seq len, batch size, emb dim]\n",
"\n",
" packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, lengths, enforce_sorted = False)\n",
"\n",
" packed_output, hidden = self.gru(packed_embedded)\n",
"\n",
" output, _ = nn.utils.rnn.pad_packed_sequence(packed_output)\n",
"\n",
" # output = [seq_len, batch size, n directions * hid dim]\n",
" # hidden = [n layers * n directions, batch size, hid dim]\n",
"\n",
" prediction = self.fc(hidden.squeeze(0))\n",
"\n",
" # prediction = [batch size, output dim]\n",
"\n",
" return prediction "
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "mEb-ff-bQtKL"
},
"outputs": [],
"source": [
"input_dim = len(vocab)\n",
"emb_dim = 100\n",
"hid_dim = 256\n",
"output_dim = 2\n",
"\n",
"model = GRU(input_dim, emb_dim, hid_dim, output_dim, pad_idx)"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "WEwnyJT_Tm8q"
},
"outputs": [],
"source": [
"def count_parameters(model):\n",
" return sum(p.numel() for p in model.parameters() if p.requires_grad)"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 35
},
"colab_type": "code",
"id": "SJdVErKTTogS",
"outputId": "aaf74c2e-2b9f-47df-a672-b809ffffd6e5"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"The model has 2,775,658 trainable parameters\n"
]
}
],
"source": [
"print(f'The model has {count_parameters(model):,} trainable parameters')"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"name: embedding.weight, shape: torch.Size([25002, 100])\n",
"name: gru.weight_ih_l0, shape: torch.Size([768, 100])\n",
"name: gru.weight_hh_l0, shape: torch.Size([768, 256])\n",
"name: gru.bias_ih_l0, shape: torch.Size([768])\n",
"name: gru.bias_hh_l0, shape: torch.Size([768])\n",
"name: fc.weight, shape: torch.Size([2, 256])\n",
"name: fc.bias, shape: torch.Size([2])\n"
]
}
],
"source": [
"for n, p in model.named_parameters():\n",
" print(f'name: {n}, shape: {p.shape}')"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [],
"source": [
"def initialize_parameters(m):\n",
" if isinstance(m, nn.Embedding):\n",
" nn.init.uniform_(m.weight, -0.05, 0.05)\n",
" elif isinstance(m, nn.GRU):\n",
" for n, p in m.named_parameters():\n",
" if 'weight_ih' in n:\n",
" r, z, n = p.chunk(3)\n",
" nn.init.xavier_uniform_(r)\n",
" nn.init.xavier_uniform_(z)\n",
" nn.init.xavier_uniform_(n)\n",
" elif 'weight_hh' in n:\n",
" r, z, n = p.chunk(3)\n",
" nn.init.orthogonal_(r)\n",
" nn.init.orthogonal_(z)\n",
" nn.init.orthogonal_(n)\n",
" elif 'bias' in n:\n",
" r, z, n = p.chunk(3)\n",
" nn.init.zeros_(r)\n",
" nn.init.zeros_(z)\n",
" nn.init.zeros_(n)\n",
" elif isinstance(m, nn.Linear):\n",
" nn.init.xavier_uniform_(m.weight)\n",
" nn.init.zeros_(m.bias)"
]
},
{
"cell_type": "code",
"execution_count": 23,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"GRU(\n",
" (embedding): Embedding(25002, 100, padding_idx=1)\n",
" (gru): GRU(100, 256)\n",
" (fc): Linear(in_features=256, out_features=2, bias=True)\n",
")"
]
},
"execution_count": 23,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.apply(initialize_parameters)"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "HE9cEN3XTpf7"
},
"outputs": [],
"source": [
"glove = torchtext.experimental.vectors.GloVe(name = '6B',\n",
" dim = emb_dim)"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "AyI08bfvTrCV"
},
"outputs": [],
"source": [
"def get_pretrained_embedding(initial_embedding, pretrained_vectors, vocab, unk_token):\n",
" \n",
" pretrained_embedding = torch.FloatTensor(initial_embedding.weight.clone()).detach() \n",
" pretrained_vocab = pretrained_vectors.vectors.get_stoi()\n",
" \n",
" unk_tokens = []\n",
" \n",
" for idx, token in enumerate(vocab.itos):\n",
" if token in pretrained_vocab:\n",
" pretrained_vector = pretrained_vectors[token]\n",
" pretrained_embedding[idx] = pretrained_vector\n",
" else:\n",
" unk_tokens.append(token)\n",
" \n",
" return pretrained_embedding, unk_tokens"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "GPMcsd6HTtoC"
},
"outputs": [],
"source": [
"unk_token = '<unk>'\n",
"\n",
"pretrained_embedding, unk_tokens = get_pretrained_embedding(model.embedding, glove, vocab, unk_token)"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 139
},
"colab_type": "code",
"id": "LhlnYb2ZTvPr",
"outputId": "8d56d0e2-6af1-40fe-ea1e-9ec7a42d8b15"
},
"outputs": [
{
"data": {
"text/plain": [
"tensor([[ 0.0098, 0.0150, -0.0099, ..., 0.0211, -0.0092, 0.0027],\n",
" [ 0.0347, 0.0276, 0.0468, ..., -0.0315, -0.0472, -0.0326],\n",
" [-0.0382, -0.2449, 0.7281, ..., -0.1459, 0.8278, 0.2706],\n",
" ...,\n",
" [-0.2925, 0.1087, 0.7920, ..., -0.3641, 0.1822, -0.4104],\n",
" [-0.7250, 0.7545, 0.1637, ..., -0.0144, -0.1761, 0.3418],\n",
" [ 1.1753, 0.0460, -0.3542, ..., 0.4510, 0.0485, -0.4015]])"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.embedding.weight.data.copy_(pretrained_embedding)"
]
},
{
"cell_type": "code",
"execution_count": 28,
"metadata": {},
"outputs": [],
"source": [
"model.embedding.weight.data[pad_idx] = torch.zeros(emb_dim)"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"tensor([[ 0.0098, 0.0150, -0.0099, ..., 0.0211, -0.0092, 0.0027],\n",
" [ 0.0000, 0.0000, 0.0000, ..., 0.0000, 0.0000, 0.0000],\n",
" [-0.0382, -0.2449, 0.7281, ..., -0.1459, 0.8278, 0.2706],\n",
" ...,\n",
" [-0.2925, 0.1087, 0.7920, ..., -0.3641, 0.1822, -0.4104],\n",
" [-0.7250, 0.7545, 0.1637, ..., -0.0144, -0.1761, 0.3418],\n",
" [ 1.1753, 0.0460, -0.3542, ..., 0.4510, 0.0485, -0.4015]])"
]
},
"execution_count": 29,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model.embedding.weight.data"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "Sji9nWvaTxcp"
},
"outputs": [],
"source": [
"optimizer = optim.Adam(model.parameters())"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "a4Q-afN8Tyqr"
},
"outputs": [],
"source": [
"criterion = nn.CrossEntropyLoss()"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "PjZOAABMT0-T"
},
"outputs": [],
"source": [
"device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "6cYt2pfoT3TD"
},
"outputs": [],
"source": [
"model = model.to(device)\n",
"criterion = criterion.to(device)"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "SSdhLxTJT4mn"
},
"outputs": [],
"source": [
"def calculate_accuracy(predictions, labels):\n",
" top_predictions = predictions.argmax(1, keepdim = True)\n",
" correct = top_predictions.eq(labels.view_as(top_predictions)).sum()\n",
" accuracy = correct.float() / labels.shape[0]\n",
" return accuracy"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "EoJT5j-1T54w"
},
"outputs": [],
"source": [
"def train(model, iterator, optimizer, criterion, device):\n",
" \n",
" epoch_loss = 0\n",
" epoch_acc = 0\n",
" \n",
" model.train()\n",
" \n",
" for labels, text, lengths in iterator:\n",
" \n",
" labels = labels.to(device)\n",
" text = text.to(device)\n",
"\n",
" optimizer.zero_grad()\n",
" \n",
" predictions = model(text, lengths)\n",
" \n",
" loss = criterion(predictions, labels)\n",
" \n",
" acc = calculate_accuracy(predictions, labels)\n",
" \n",
" loss.backward()\n",
" \n",
" optimizer.step()\n",
" \n",
" epoch_loss += loss.item()\n",
" epoch_acc += acc.item()\n",
"\n",
" return epoch_loss / len(iterator), epoch_acc / len(iterator)"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "UBh7g1cnUBMG"
},
"outputs": [],
"source": [
"def evaluate(model, iterator, criterion, device):\n",
" \n",
" epoch_loss = 0\n",
" epoch_acc = 0\n",
" \n",
" model.eval()\n",
" \n",
" with torch.no_grad():\n",
" \n",
" for labels, text, lengths in iterator:\n",
"\n",
" labels = labels.to(device)\n",
" text = text.to(device)\n",
" \n",
" predictions = model(text, lengths)\n",
" \n",
" loss = criterion(predictions, labels)\n",
" \n",
" acc = calculate_accuracy(predictions, labels)\n",
"\n",
" epoch_loss += loss.item()\n",
" epoch_acc += acc.item()\n",
" \n",
" return epoch_loss / len(iterator), epoch_acc / len(iterator)"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "jSMtdoeSUDAH"
},
"outputs": [],
"source": [
"def epoch_time(start_time, end_time):\n",
" elapsed_time = end_time - start_time\n",
" elapsed_mins = int(elapsed_time / 60)\n",
" elapsed_secs = int(elapsed_time - (elapsed_mins * 60))\n",
" return elapsed_mins, elapsed_secs"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 537
},
"colab_type": "code",
"id": "lG-dJsjFUF8x",
"outputId": "c434d13f-4efa-4a7c-c346-5e886db0405d"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Epoch: 01 | Epoch Time: 0m 7s\n",
"\tTrain Loss: 0.654 | Train Acc: 60.73%\n",
"\t Val. Loss: 0.584 | Val. Acc: 68.87%\n",
"Epoch: 02 | Epoch Time: 0m 7s\n",
"\tTrain Loss: 0.423 | Train Acc: 80.73%\n",
"\t Val. Loss: 0.332 | Val. Acc: 86.04%\n",
"Epoch: 03 | Epoch Time: 0m 7s\n",
"\tTrain Loss: 0.252 | Train Acc: 90.15%\n",
"\t Val. Loss: 0.285 | Val. Acc: 88.63%\n",
"Epoch: 04 | Epoch Time: 0m 8s\n",
"\tTrain Loss: 0.186 | Train Acc: 93.05%\n",
"\t Val. Loss: 0.286 | Val. Acc: 89.40%\n",
"Epoch: 05 | Epoch Time: 0m 7s\n",
"\tTrain Loss: 0.116 | Train Acc: 95.85%\n",
"\t Val. Loss: 0.307 | Val. Acc: 89.56%\n",
"Epoch: 06 | Epoch Time: 0m 7s\n",
"\tTrain Loss: 0.065 | Train Acc: 97.90%\n",
"\t Val. Loss: 0.354 | Val. Acc: 89.64%\n",
"Epoch: 07 | Epoch Time: 0m 8s\n",
"\tTrain Loss: 0.042 | Train Acc: 98.74%\n",
"\t Val. Loss: 0.403 | Val. Acc: 89.35%\n",
"Epoch: 08 | Epoch Time: 0m 8s\n",
"\tTrain Loss: 0.020 | Train Acc: 99.47%\n",
"\t Val. Loss: 0.408 | Val. Acc: 89.35%\n",
"Epoch: 09 | Epoch Time: 0m 7s\n",
"\tTrain Loss: 0.010 | Train Acc: 99.81%\n",
"\t Val. Loss: 0.505 | Val. Acc: 88.53%\n",
"Epoch: 10 | Epoch Time: 0m 7s\n",
"\tTrain Loss: 0.007 | Train Acc: 99.85%\n",
"\t Val. Loss: 0.657 | Val. Acc: 88.27%\n"
]
}
],
"source": [
"n_epochs = 10\n",
"\n",
"best_valid_loss = float('inf')\n",
"\n",
"for epoch in range(n_epochs):\n",
"\n",
" start_time = time.monotonic()\n",
" \n",
" train_loss, train_acc = train(model, train_iterator, optimizer, criterion, device)\n",
" valid_loss, valid_acc = evaluate(model, valid_iterator, criterion, device)\n",
" \n",
" end_time = time.monotonic()\n",
"\n",
" epoch_mins, epoch_secs = epoch_time(start_time, end_time)\n",
" \n",
" if valid_loss < best_valid_loss:\n",
" best_valid_loss = valid_loss\n",
" torch.save(model.state_dict(), 'gru-model.pt')\n",
" \n",
" print(f'Epoch: {epoch+1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s')\n",
" print(f'\\tTrain Loss: {train_loss:.3f} | Train Acc: {train_acc*100:.2f}%')\n",
" print(f'\\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_acc*100:.2f}%')"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 35
},
"colab_type": "code",
"id": "PH7-0f6nUKRb",
"outputId": "faf1e6dd-c99e-4fda-c6f8-435a08ca0073"
},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Test Loss: 0.290 | Test Acc: 87.93%\n"
]
}
],
"source": [
"model.load_state_dict(torch.load('gru-model.pt'))\n",
"\n",
"test_loss, test_acc = evaluate(model, test_iterator, criterion, device)\n",
"\n",
"print(f'Test Loss: {test_loss:.3f} | Test Acc: {test_acc*100:.2f}%')"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {
"colab": {},
"colab_type": "code",
"id": "rnWNSo8kdcl_"
},
"outputs": [],
"source": [
"def predict_sentiment(tokenizer, vocab, model, device, sentence):\n",
" model.eval()\n",
" tokens = tokenizer.tokenize(sentence)\n",
" length = torch.LongTensor([len(tokens)]).to(device)\n",
" indexes = [vocab.stoi[token] for token in tokens]\n",
" tensor = torch.LongTensor(indexes).unsqueeze(-1).to(device)\n",
" prediction = model(tensor, length)\n",
" probabilities = nn.functional.softmax(prediction, dim = -1)\n",
" pos_probability = probabilities.squeeze()[-1].item()\n",
" return pos_probability"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 35
},
"colab_type": "code",
"id": "hb7bC-aEeC1q",
"outputId": "059cccd1-efb4-404c-81f9-606983c23b33"
},
"outputs": [
{
"data": {
"text/plain": [
"0.06520231813192368"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sentence = 'the absolute worst movie of all time.'\n",
"\n",
"predict_sentiment(tokenizer, vocab, model, device, sentence)"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 35
},
"colab_type": "code",
"id": "APEVZ3D4eEVw",
"outputId": "0d188e29-6e4e-4183-c7aa-467ea8f1afe6"
},
"outputs": [
{
"data": {
"text/plain": [
"0.8539475798606873"
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sentence = 'one of the greatest films i have ever seen in my life.'\n",
"\n",
"predict_sentiment(tokenizer, vocab, model, device, sentence)"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 35
},
"colab_type": "code",
"id": "X7GMey_jebjg",
"outputId": "04ca4196-51f0-4661-ffe4-8f4dd199baf4"
},
"outputs": [
{
"data": {
"text/plain": [
"0.15590433776378632"
]
},
"execution_count": 43,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sentence = \"i thought it was going to be one of the greatest films i have ever seen in my life, \\\n",
"but it was actually the absolute worst movie of all time.\"\n",
"\n",
"predict_sentiment(tokenizer, vocab, model, device, sentence)"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {
"colab": {
"base_uri": "https://localhost:8080/",
"height": 35
},
"colab_type": "code",
"id": "kOoESlQSxYx2",
"outputId": "e5826bef-5f9c-41f6-9eb0-795318280045"
},
"outputs": [
{
"data": {
"text/plain": [
"0.3470574617385864"
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"sentence = \"i thought it was going to be the absolute worst movie of all time, \\\n",
"but it was actually one of the greatest films i have ever seen in my life.\"\n",
"\n",
"predict_sentiment(tokenizer, vocab, model, device, sentence)"
]
}
],
"metadata": {
"accelerator": "GPU",
"colab": {
"machine_shape": "hm",
"name": "2_rnn_gru.ipynb",
"provenance": []
},
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.8.3"
}
},
"nbformat": 4,
"nbformat_minor": 1
}