Stance-Detection-in-Web-and.../TAN
2019-06-18 22:05:23 +05:30
..
early_stopping_training.py finalised TAN 2019-06-18 21:42:32 +05:30
emnlp_dict.txt added TAN repository 2019-06-18 21:04:57 +05:30
networks.py finalised TAN 2019-06-18 21:42:32 +05:30
noslang_data.json added TAN repository 2019-06-18 21:04:57 +05:30
README.md Updated README.md 2019-06-18 22:05:23 +05:30
utils.py finalised TAN 2019-06-18 21:42:32 +05:30

networks.py

class LSTM_TAN(nn.Module):

def __init__(self,version,embedding_dim, hidden_dim, vocab_size, n_targets,embedding_matrix,dropout = 0.5):

Args

  1. version - str - one of ["lstm,"tan-","tan"]
  2. embedding_dim - int - dimension of word_embedding
  3. hidden_dim - int - dimension of LSTM hidden state
  4. vocab_size - int - number of words in the vocabulary
  5. n_targets - int - number of dataset classes
  6. embedding_matrix - numpy array dtype=float - word embedding matrix
  7. dropout - The dropout to be applied before on the final hidden state(lstm)/attention-weighted hidden state (tan-,tan)

Returns

  1. A torch.nn.module object for the specified version
def forward(self, sentence, target,verbose=False)

Args

  1. sentence - a numpy array of shape [1xN] and dtype int, where N is the length of the input sentence and each entry is the corresponding index of the word in the embedding_matrix
  2. target - a numpy array of shape [1xM] and dtype int, where M is the length of the target and each entry is the corresponding index of the word in the `embedding_matrix

Returns

  1. target_scores - a torch float Tensor of shape [1xn_targets], where N is the number of dataset classes. This is the log likelihood probabilities of all the classes

Running the code

python early_stopping_training.py <dataset> <version>
  1. dataset is one of ['VC', 'HC', 'HRT', 'LA', 'CC', 'SC', 'EC', 'MMR', 'AT', 'FM']
if dataset == 'EC':
        topic = 'E-ciggarettes are safer than normal ciggarettes'
        folder = "Data_MPCHI_P"
    elif dataset == 'SC':
        topic = 'Sun exposure can lead to skin cancer'
        folder = "Data_MPCHI_P"
    elif dataset == 'VC':
        topic = 'Vitamin C prevents common cold'
        folder = "Data_MPCHI_P"
    elif dataset == 'HRT':
        topic = 'Women should take HRT post menopause'
        folder = "Data_MPCHI_P"
    elif dataset == 'MMR':
        topic = 'MMR vaccine can cause autism'
        folder = "Data_MPCHI_P"
    elif dataset == 'AT' :
        topic = "atheism"
    elif dataset == 'HC' :
        topic = "hillary clinton"
    elif dataset == 'LA' :
        topic = "legalization of abortion"
    elif dataset == 'CC' :
        topic = "climate change is a real concern"
    elif dataset == 'FM' :
        topic = "feminist movement"
    elif dataset == 'VCA':
        topic = "vaccines cause autism"
    elif dataset == 'VTI':
        topic = "vaccines treat influenza"
  1. version is one of ["lstm","tan-","tan+"]

Returns Trains the model according to the voting scheme discussed in the paper. Prints the final F-Score on the test set.