Stance-Detection-in-Web-and.../CNN/T6SA_conv_net_sentence.py
2019-06-16 11:34:28 +05:30

717 lines
27 KiB
Python
Executable File
Raw Permalink Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# -*- coding: utf-8 -*-
"""
Modified from sample code:
Convolutional Neural Networks for Sentence Classification
http://arxiv.org/pdf/1408.5882v2.pdf
Much of the code is modified from
- deeplearning.net (for ConvNet classes)
- https://github.com/mdenil/dropout (for dropout)
- https://groups.google.com/forum/#!topic/pylearn-dev/3QbKtCumAW4 (for Adadelta)
"""
import cPickle
import numpy as np
from collections import defaultdict, OrderedDict
import theano
import theano.tensor as T
import re
import warnings
import sys
import os
import multiprocessing as mp
import wordninja
import pickle
import glob
warnings.filterwarnings("ignore")
EMBEDDING_DIMENSION = 300
#different non-linearities
def ReLU(x):
y = T.maximum(0.0, x)
return(y)
def Sigmoid(x):
y = T.nnet.sigmoid(x)
return(y)
def Tanh(x):
y = T.tanh(x)
return(y)
def Iden(x):
y = x
return(y)
""" vote scheme """
def vote_for_answer(test_vote_array,test_set_y,perf_or_predict):
test_real_size = test_vote_array.shape[0]
group = test_vote_array.shape[1]
test_result = np.zeros((test_real_size,1))
for i in range(test_real_size):
max_vote = max(test_vote_array[i])
for j in range(group):
if test_vote_array[i][j] == max_vote:
test_result[i] = j
break
sum_4_test = 0
for i in range(test_real_size):
if test_result[i] == test_set_y[i]:
sum_4_test += 1
final_test_perf = float(sum_4_test) / test_real_size
if perf_or_predict == 0:
return final_test_perf
if perf_or_predict == 1:
print "perf: " + str(final_test_perf) + "\n"
return test_result
def train_conv_net(use_test,
perf_or_predict,
datasets,
U,
img_w=300,
filter_hs=[3,4,5],
hidden_units=[100,3],
dropout_rate=[0.5],
shuffle_batch=True,
n_epochs=25,
batch_size=50,
lr_decay = 0.95,
conv_non_linear="relu",
activations=[Iden],
sqr_norm_lim=9,
non_static=True):
"""
Train a simple conv net
img_h = sentence length (padded where necessary)
img_w = word vector length (300 for word2vec)
filter_hs = filter window sizes
hidden_units = [x,y] x is the number of feature maps (per filter window), and y is the penultimate layer
sqr_norm_lim = s^2 in the paper
lr_decay = adadelta decay parameter
"""
rng = np.random.RandomState(3435)
img_h = len(datasets[0][0])-1
filter_w = img_w
feature_maps = hidden_units[0]
filter_shapes = []
pool_sizes = []
test_real_size = datasets[1].shape[0]
print test_real_size
test_vote_array = np.zeros((datasets[1].shape[0],10))
test_prob_array = np.zeros((datasets[1].shape[0],3))
for filter_h in filter_hs:
filter_shapes.append((feature_maps, 1, filter_h, filter_w))
pool_sizes.append((img_h-filter_h+1, img_w-filter_w+1))
parameters = [("image shape",img_h,img_w),("filter shape",filter_shapes), ("hidden_units",hidden_units),
("dropout", dropout_rate), ("batch_size",batch_size),("non_static", non_static),
("learn_decay",lr_decay), ("conv_non_linear", conv_non_linear), ("non_static", non_static)
,("sqr_norm_lim",sqr_norm_lim),("shuffle_batch",shuffle_batch)]
print parameters
#define model architecture
index = T.lscalar()
x = T.matrix('x')
y = T.ivector('y')
Words = theano.shared(value = U, name = "Words")
zero_vec_tensor = T.vector()
zero_vec = np.zeros(img_w)
set_zero = theano.function([zero_vec_tensor], updates=[(Words, T.set_subtensor(Words[0,:], zero_vec_tensor))])
layer0_input = Words[T.cast(x.flatten(),dtype="int32")].reshape((x.shape[0],1,x.shape[1],Words.shape[1]))
conv_layers = []
layer1_inputs = []
for i in xrange(len(filter_hs)):
filter_shape = filter_shapes[i]
pool_size = pool_sizes[i]
conv_layer = LeNetConvPoolLayer(rng, input=layer0_input,image_shape=(batch_size, 1, img_h, img_w),
filter_shape=filter_shape, poolsize=pool_size, non_linear=conv_non_linear)
layer1_input = conv_layer.output.flatten(2)
conv_layers.append(conv_layer)
layer1_inputs.append(layer1_input)
layer1_input = T.concatenate(layer1_inputs,1)
hidden_units[0] = feature_maps*len(filter_hs)
classifier = MLPDropout(rng, input=layer1_input, layer_sizes=hidden_units, activations=activations, dropout_rates=dropout_rate)
#define parameters of the model and update functions using adadelta
params = classifier.params
for conv_layer in conv_layers:
params += conv_layer.params
if non_static:
#if word vectors are allowed to change, add them as model parameters
params += [Words]
cost = classifier.negative_log_likelihood(y)
dropout_cost = classifier.dropout_negative_log_likelihood(y)
grad_updates = sgd_updates_adadelta(params, dropout_cost, lr_decay, 1e-6, sqr_norm_lim)
#shuffle dataset and assign to mini batches. if dataset size is not a multiple of mini batches, replicate
#extra data (at random)
np.random.seed()
if datasets[0].shape[0] % batch_size > 0:
extra_data_num = batch_size - datasets[0].shape[0] % batch_size
train_set = np.random.permutation(datasets[0])
extra_data = train_set[:extra_data_num]
new_data=np.append(datasets[0],extra_data,axis=0)
else:
new_data = datasets[0]
if use_test == 1 and datasets[1].shape[0] % batch_size > 0:
extra_data_num = batch_size - datasets[1].shape[0] % batch_size
extra_data = datasets[1][:extra_data_num]
datasets[1] = np.append(datasets[1],extra_data,axis=0)
new_data = np.random.permutation(new_data)
n_batches = new_data.shape[0]/batch_size
n_train_batches = int(np.round(n_batches*0.9))
if use_test == 1:
n_test_batches = int(np.round(datasets[1].shape[0]/batch_size))
#divide train set into train/val sets
test_set_x_4check = datasets[1][:,:img_h]
test_probs = []
test_set_y_4check = np.asarray(datasets[1][:,-1],"int32")
train_set = new_data[:n_train_batches*batch_size,:]
val_set = new_data[n_train_batches*batch_size:,:]
train_set_x, train_set_y = shared_dataset((train_set[:,:img_h],train_set[:,-1]))
val_set_x, val_set_y = shared_dataset((val_set[:,:img_h],val_set[:,-1]))
test_set_x, test_set_y = shared_dataset((datasets[1][:,:img_h],datasets[1][:,-1]))
n_val_batches = n_batches - n_train_batches
val_model = theano.function([index], classifier.errors(y),
givens={
x: val_set_x[index * batch_size: (index + 1) * batch_size],
y: val_set_y[index * batch_size: (index + 1) * batch_size]})
#compile theano functions to get train/val/test errors
test_model = theano.function([index], classifier.errors(y),
givens={
x: train_set_x[index * batch_size: (index + 1) * batch_size],
y: train_set_y[index * batch_size: (index + 1) * batch_size]})
train_model = theano.function([index], cost, updates=grad_updates,
givens={
x: train_set_x[index*batch_size:(index+1)*batch_size],
y: train_set_y[index*batch_size:(index+1)*batch_size]})
get_test_label = theano.function([index], classifier.testlabel(),
givens={
x: test_set_x[index * batch_size: (index + 1) * batch_size]})
get_test_prob = theano.function([index], classifier.testprobs(),
givens={
x: test_set_x[index * batch_size: (index + 1) * batch_size]})
test_pred_layers = []
if use_test == 1:
test_size = batch_size
else:
test_size = datasets[1].shape[0]
test_layer0_input = Words[T.cast(x.flatten(),dtype="int32")].reshape((test_size,1,img_h,Words.shape[1]))
for conv_layer in conv_layers:
test_layer0_output = conv_layer.predict(test_layer0_input, test_size)
test_pred_layers.append(test_layer0_output.flatten(2))
test_layer1_input = T.concatenate(test_pred_layers, 1)
test_y_pred = classifier.predict(test_layer1_input)
test_error = T.mean(T.neq(test_y_pred, y))
test_model_all = theano.function([x,y], test_error)
get_test_result = theano.function([x],test_y_pred)
#start training over mini-batches
print '... training'
epoch = 0
best_test_perf = 0
final_test_perf = 0
predict_vector = []
val_perf = 0
test_perf = 0
cost_epoch = 0
while (epoch < n_epochs):
epoch = epoch + 1
if shuffle_batch:
for minibatch_index in np.random.permutation(range(n_train_batches)):
cost_epoch = train_model(minibatch_index)
set_zero(zero_vec)
else:
for minibatch_index in xrange(n_train_batches):
cost_epoch = train_model(minibatch_index)
set_zero(zero_vec)
train_losses = [test_model(i) for i in xrange(n_train_batches)]
train_perf = 1 - np.mean(train_losses)
val_losses = [val_model(i) for i in xrange(n_val_batches)]
val_perf = 1- np.mean(val_losses)
print('epoch %i, train perf %f %%, val perf %f' % (epoch, train_perf * 100., val_perf*100.))
if epoch>=6 and epoch%2 == 0:
if use_test == 1:
test_result = []
test_res_scores = []
for minibatch_index in xrange(n_test_batches):
test_result_tmp_scores = get_test_prob(minibatch_index)
test_result_tmp_scores = np.array(test_result_tmp_scores)
# print test_result_tmp_scores
test_result_tmp = get_test_label(minibatch_index)
test_result_tmp = np.array(test_result_tmp)
test_res_scores.append(test_result_tmp_scores)
test_result.append(test_result_tmp)
test_result = np.array(test_result)
test_res_scores = np.array(test_res_scores)
test_result = test_result.reshape((n_test_batches * batch_size,1))
test_res_scores = test_res_scores.reshape((n_test_batches * batch_size,3))
# print test_res_scores.shape
for i in range(test_real_size):
test_vote_array[i][test_result[i]]+=1
for i in range(test_real_size):
test_prob_array[i] = test_res_scores[i]
# print test_prob_array.shape
# print test_prob_array
test_probs.append(test_prob_array)
sum_4_test = 0
for i in range(test_real_size):
if test_result[i] == test_set_y_4check[i]:
sum_4_test += 1
test_perf = float(sum_4_test)/test_real_size
if test_perf > best_test_perf:
best_test_perf = test_perf
print("test_perf: " + str(test_perf))
if use_test == 0:
test_result = get_test_result(test_set_x_4check)
test_result = np.array(test_result)
for i in range(test_real_size):
test_vote_array[i][test_result[i]]+=1
sum_4_test = 0
for i in range(test_real_size):
if test_result[i] == test_set_y_4check[i]:
sum_4_test += 1
test_perf = float(sum_4_test)/test_real_size
if test_perf > best_test_perf:
best_test_perf = test_perf
print("test_perf: " + str(test_perf))
if epoch == n_epochs:
if perf_or_predict == 0:
final_test_perf = vote_for_answer(test_vote_array,test_set_y_4check,perf_or_predict)
return final_test_perf
if perf_or_predict == 1:
predict_vector = vote_for_answer(test_vote_array,test_set_y_4check,perf_or_predict)
return predict_vector,test_probs
def shared_dataset(data_xy, borrow=True):
""" Function that loads the dataset into shared variables
The reason we store our dataset in shared variables is to allow
Theano to copy it into the GPU memory (when code is run on GPU).
Since copying data into the GPU is slow, copying a minibatch everytime
is needed (the default behaviour if the data is not in a shared
variable) would lead to a large decrease in performance.
"""
data_x, data_y = data_xy
shared_x = theano.shared(np.asarray(data_x,
dtype=theano.config.floatX),
borrow=borrow)
shared_y = theano.shared(np.asarray(data_y,
dtype=theano.config.floatX),
borrow=borrow)
return shared_x, T.cast(shared_y, 'int32')
def sgd_updates_adadelta(params,cost,rho=0.95,epsilon=1e-6,norm_lim=9,word_vec_name='Words'):
"""
adadelta update rule, mostly from
https://groups.google.com/forum/#!topic/pylearn-dev/3QbKtCumAW4 (for Adadelta)
"""
updates = OrderedDict({})
exp_sqr_grads = OrderedDict({})
exp_sqr_ups = OrderedDict({})
gparams = []
for param in params:
empty = np.zeros_like(param.get_value())
exp_sqr_grads[param] = theano.shared(value=as_floatX(empty),name="exp_grad_%s" % param.name)
gp = T.grad(cost, param)
exp_sqr_ups[param] = theano.shared(value=as_floatX(empty), name="exp_grad_%s" % param.name)
gparams.append(gp)
for param, gp in zip(params, gparams):
exp_sg = exp_sqr_grads[param]
exp_su = exp_sqr_ups[param]
up_exp_sg = rho * exp_sg + (1 - rho) * T.sqr(gp)
updates[exp_sg] = up_exp_sg
step = -(T.sqrt(exp_su + epsilon) / T.sqrt(up_exp_sg + epsilon)) * gp
updates[exp_su] = rho * exp_su + (1 - rho) * T.sqr(step)
stepped_param = param + step
if (param.get_value(borrow=True).ndim == 2) and (param.name!='Words'):
col_norms = T.sqrt(T.sum(T.sqr(stepped_param), axis=0))
desired_norms = T.clip(col_norms, 0, T.sqrt(norm_lim))
scale = desired_norms / (1e-7 + col_norms)
updates[param] = stepped_param * scale
else:
updates[param] = stepped_param
return updates
def as_floatX(variable):
if isinstance(variable, float):
return np.cast[theano.config.floatX](variable)
if isinstance(variable, np.ndarray):
return np.cast[theano.config.floatX](variable)
return theano.tensor.cast(variable, theano.config.floatX)
def safe_update(dict_to, dict_from):
"""
re-make update dictionary for safe updating
"""
for key, val in dict(dict_from).iteritems():
if key in dict_to:
raise KeyError(key)
dict_to[key] = val
return dict_to
def split(word, word2emb):
if word in word2emb:
return [word]
return wordninja.split(word)
def get_idx_from_sent(sent, word_idx_map, max_l=51, k=300, filter_h=5):
"""
Transforms sentence into a list of indices. Pad with zeroes.
"""
x = []
pad = filter_h - 1
for i in xrange(pad):
x.append(0)
words = sent.split()
words_s = []
for word in words:
words_s.extend(split(word,word_idx_map))
for word in words_s:
if word in word_idx_map:
x.append(word_idx_map[word])
while len(x) < max_l+2*pad:
x.append(0)
return x
def make_idx_data_cv(revs, word_idx_map, cv, max_l=51, k=300, filter_h=5):
"""
Transforms sentences into a 2-d matrix.
"""
train, test = [], []
for rev in revs:
sent = get_idx_from_sent(rev["text"], word_idx_map, max_l, k, filter_h)
sent.append(rev["y"])
if rev["split"]==cv:
test.append(sent)
else:
train.append(sent)
train_len = [len(x) for x in train]
most_common = max(set(train_len), key=train_len.count)
print most_common
newtrain = []
for i in train:
if len(i)==most_common:
newtrain.append(i)
train = np.array(newtrain,dtype="int")
test_len = [len(x) for x in test]
most_common = max(set(test_len), key=test_len.count)
print most_common
newtest = []
for i in test:
if(len(i)==most_common):
newtest.append(i)
test = np.array(newtest,dtype="int")
return [train, test]
def make_idx_data_cv_hyper(revs, word_idx_map, cv, max_l=51, k=300, filter_h=5):
"""
Transforms sentences into a 2-d matrix.
"""
train, test = [], []
for rev in revs:
sent = get_idx_from_sent(rev["text"], word_idx_map, max_l, k, filter_h)
sent.append(rev["y"])
if rev["split"]==2*cv or rev["split"]==(2*cv+1):
test.append(sent)
else:
train.append(sent)
train_len = [len(x) for x in train]
most_common = max(set(train_len), key=train_len.count)
print most_common
newtrain = []
for i in train:
if len(i)==most_common:
newtrain.append(i)
train = np.array(newtrain,dtype="int")
test_len = [len(x) for x in test]
most_common = max(set(test_len), key=test_len.count)
print most_common
newtest = []
for i in test:
if(len(i)==most_common):
newtest.append(i)
test = np.array(newtest,dtype="int")
return [train, test]
def make_idx_data(revs_train, revs_test, word_idx_map, max_l=51, k=300, filter_h=5):
"""
Transforms sentences into a 2-d matrix.
"""
train, test= [] ,[]
for rev in revs_train:
sent = get_idx_from_sent(rev["text"], word_idx_map, max_l, k, filter_h)
sent.append(rev["y"])
train.append(sent)
for rev in revs_test:
sent = get_idx_from_sent(rev["text"], word_idx_map, max_l, k, filter_h)
sent.append(rev["y"])
test.append(sent)
train_len = [len(x) for x in train]
most_common = max(set(train_len), key=train_len.count)
print most_common
newtrain = []
for i in train:
if len(i)==most_common:
newtrain.append(i)
train = np.array(newtrain,dtype="int")
test_len = [len(x) for x in test]
most_common = max(set(test_len), key=test_len.count)
print most_common
newtest = []
for i in test:
if(len(i)==most_common):
newtest.append(i)
test = np.array(newtest,dtype="int")
return [train, test]
def score(y_true,y_pred):
print(type(y_true))
print(type(y_pred))
print(y_true)
print(y_pred)
fav = [0,0,0]
ag = [0,0,0]
tot = [fav,ag]
corr = 0
for y_t,y_p in zip(y_true,y_pred):
y_p = int(y_p[0])
if y_t < 2:
tot[y_t][2]+=1
if y_p < 2:
tot[y_p][1]+=1
if y_t == y_p and y_t < 2:
tot[y_t][0]+=1
if y_t == y_p:
corr+=1
r0 = tot[0][0]/(tot[0][2]+1e-5)
p0 = tot[0][0]/(tot[0][1]+1e-5)
r1 = tot[1][0]/(tot[1][2]+1e-5)
p1 = tot[1][0]/(tot[1][1]+1e-5)
f0 = 2*r0*p0/(r0+p0+1e-5)
f1 = 2*r1*p1/(r1+p1+1e-5)
f_avg = (f0+f1)/2
print (tot)
return f_avg
def tuning_hyparameters(r_cv,revs,word_idx_map,non_static,dropout,sqr_norm,output):
s = 0
for i in r_cv:
datasets = make_idx_data_cv_hyper(revs, word_idx_map, i, max_l=80,k=EMBEDDING_DIMENSION, filter_h=5)
ret,_ = train_conv_net(0,1,
datasets,
U,
img_w = EMBEDDING_DIMENSION,
lr_decay=0.95,
filter_hs=[3,4,5],
conv_non_linear="relu",
hidden_units=[100,3],
shuffle_batch=True,
n_epochs=25,
sqr_norm_lim=sqr_norm,
non_static=non_static,
batch_size=50,
dropout_rate=[dropout])
test_set_y_4check = np.asarray(datasets[1][:,-1],"int32")
s += score(test_set_y_4check,ret)
s = s/float(5)
output.put((s,dropout,sqr_norm))
if __name__=="__main__":
print "loading data...",
writefile = sys.argv[4]
filename = os.path.basename(writefile)
path = writefile.replace(filename,"")
x = cPickle.load(open(path+"mr.p","rb"))
revs, revs_test, W, W2, word_idx_map, vocab = x[0], x[1], x[2], x[3], x[4], x[5]
print "data loaded!"
mode= sys.argv[1]
word_vectors = sys.argv[2]
print_answer_mode = sys.argv[3]
if mode=="-nonstatic":
print "model architecture: CNN-non-static"
non_static=True
elif mode=="-static":
print "model architecture: CNN-static"
non_static=False
execfile("conv_net_classes.py")
if word_vectors=="-rand":
print "using: random vectors"
U = W2
elif word_vectors=="-word2vec":
print "using: word2vec vectors"
U = W
if print_answer_mode == "-perf":
print "print answer mode: perf"
perf_or_predict = 0
elif print_answer_mode == "-predict":
print "print answer mode: predict"
perf_or_predict = 1
"""5-Fold Cross Validation to find out the hyperparameters"""
r_cv = range(0,5)
sqr_norm_lim_vals = np.linspace(7,9, num = 3)
dropout_rate_vals = np.linspace(0.5,0.9, num = 5)
max_s = 0
best_params = None
output_lin = mp.Queue()
processes = []
sqr_norm = 9
hyper_file = writefile[:-3]+'_hyperparams.pkl'
if not os.path.isfile(hyper_file):
for dropout in dropout_rate_vals:
print ((dropout))
processes.append(mp.Process(target=tuning_hyparameters, args=(r_cv,revs,word_idx_map,non_static,dropout,sqr_norm,output_lin)))
# for i in r_cv:
# datasets = make_idx_data_cv_hyper(revs, word_idx_map, i, max_l=56,k=EMBEDDING_DIMENSION, filter_h=5)
# ret = train_conv_net(0,1,
# datasets,
# U,
# img_w = EMBEDDING_DIMENSION,
# lr_decay=lr,
# filter_hs=[3,4,5],
# conv_non_linear="relu",
# hidden_units=[100,3],
# shuffle_batch=True,
# n_epochs=50,
# sqr_norm_lim=9,
# non_static=non_static,
# batch_size=50,
# dropout_rate=[dropout])
# test_set_y_4check = np.asarray(datasets[1][:,-1],"int32")
# s += score(test_set_y_4check,ret)
# s = s/float(5)
# if s > max_s:
# max_s = s
# best_params = {'lr':lr,'dropout_rate':dropout}
for p in processes:
p.start()
p.join()
# for p in processes:
# p.join()
results_lin = [output_lin.get() for p in processes]
results_lin.sort(reverse=True)
print(results_lin)
best_params = {'lr':0.95,'dropout_rate':results_lin[0][1], 'sqr_norm':9}
with open(writefile[:-3]+'_hyperparams.pkl', 'wb') as phf:
pickle.dump(best_params, phf)
else:
with open(writefile[:-3]+'_hyperparams.pkl', 'rb') as phf:
best_params = pickle.load(phf)
print "Loadeds"
# best_params = {'lr':0.95,'dropout_rate':0.5}
results = []
r = range(0,10)
"""determine whether test set will be used"""
if len(revs_test)==0:
use_test = 0
else:
use_test = 1
test_prob_all = []
predict_list = [] #Contains a list of tuples - (prediction,prob_vector)
for i in r:
"""datasets[0] is training set[1] is test set"""
print(use_test)
if use_test==0:
datasets = make_idx_data_cv(revs, word_idx_map, i, max_l=80,k=EMBEDDING_DIMENSION, filter_h=5)
else:
datasets = make_idx_data(revs, revs_test, word_idx_map, max_l=80,k=EMBEDDING_DIMENSION, filter_h=5)
ret,test_probs = train_conv_net(use_test,
perf_or_predict,
datasets,
U,
img_w = EMBEDDING_DIMENSION,
lr_decay=best_params['lr'],
filter_hs=[3,4,5],
conv_non_linear="relu",
hidden_units=[100,3],
shuffle_batch=True,
n_epochs=25,
sqr_norm_lim=best_params['sqr_norm'],
non_static=non_static,
batch_size=50,
dropout_rate=[best_params['dropout_rate']])
test_prob_all.append(test_probs)
if perf_or_predict == 0:
print "cv: " + str(i) + ", perf: " + str(ret)
results.append(ret)
results = np.array(results)
if perf_or_predict == 1:
predict_answer = np.zeros((len(results[0]),1))
sum_for_predict = np.zeros((len(results[0]),10))
for i in r:
for j in range(len(results[0])):
sum_for_predict[j][int(results[i][j])]+=1
for i in range(sum_for_predict.shape[0]):
max_vote = max(sum_for_predict[i])
for j in range(sum_for_predict.shape[1]):
if sum_for_predict[i][j] == max_vote:
predict_answer[i] = j
f = open(writefile,"w")
test_prob_all = np.array(test_prob_all)
print test_prob_all.shape
# print test_prob_all[:,:,0,:]
# print test_prob_all[:,:,0,:].shape
assert predict_answer.shape[0] == test_prob_all.shape[2]
for i in range(predict_answer.shape[0]):
print predict_answer[i][0]
if predict_answer[i][0] == 0:
f.write("AGAINST\t\n")
predict_list.append(('AGAINST',test_prob_all[:,:,i,:]))
if predict_answer[i][0] == 1:
f.write("FAVOR\n")
predict_list.append(('FAVOR',test_prob_all[:,:,i,:]))
if predict_answer[i][0] == 2:
f.write("NONE\n")
predict_list.append(('NONE',test_prob_all[:,:,i,:]))
f.close()
with open(writefile[:-3]+'pkl', 'wb') as pf:
pickle.dump(predict_list, pf)
if perf_or_predict == 0:
print str(np.mean(results))