Updated README.md
This commit is contained in:
parent
25a8781ee1
commit
2f43a25fcd
@ -8,10 +8,24 @@ __Args__
|
||||
2. embedding_dim - int - dimension of word_embedding
|
||||
3. hidden_dim - int - dimension of LSTM hidden state
|
||||
4. vocab_size - int - number of words in the vocabulary
|
||||
5. n_targets - int - number of target classes
|
||||
5. n_targets - int - number of dataset classes
|
||||
6. embedding_matrix - numpy array dtype=float - word embedding matrix
|
||||
6. dropout - The dropout to be applied before on the final hidden state(lstm)/attention-weighted hidden state (tan-,tan)
|
||||
|
||||
__Returns__
|
||||
A torch.nn.module object for the specified version
|
||||
|
||||
```
|
||||
def forward(self, sentence, target,verbose=False)
|
||||
|
||||
```
|
||||
__Args__
|
||||
1. sentence - a numpy array of shape [1xN] and dtype int, where N is the length of the input sentence and each entry is the corresponding index of the word in the `embedding_matrix`
|
||||
2. target - a numpy array of shape [1xM] and dtype int, where M is the length of the target and each entry is the corresponding index of the word in the `embedding_matrix
|
||||
|
||||
__Returns__
|
||||
1. target_scores - a torch float Tensor of shape [1xn_targets], where N is the number of dataset classes. This is the log likelihood probabilities of all the classes
|
||||
|
||||
### Running the code
|
||||
To run the code you have to run *get_training_plots.py* or *early_stopping_training.py*<br>
|
||||
To change models, call the classes with specific versions as mentioned above<br>
|
||||
|
Loading…
Reference in New Issue
Block a user