Stance-Detection-in-Web-and.../CNN/conv_net_classes.py

434 lines
18 KiB
Python
Raw Normal View History

2019-06-16 12:35:19 +08:00
# -*- coding: utf-8 -*-
"""
Modified from sample code:
Convolutional Neural Networks for Sentence Classification
http://arxiv.org/pdf/1408.5882v2.pdf
Much of the code is modified from
- deeplearning.net (for ConvNet classes)
- https://github.com/mdenil/dropout (for dropout)
- https://groups.google.com/forum/#!topic/pylearn-dev/3QbKtCumAW4 (for Adadelta)
"""
import numpy
import theano.tensor.shared_randomstreams
import theano
import theano.tensor as T
from theano.tensor.signal import downsample
from theano.tensor.nnet import conv
def ReLU(x):
y = T.maximum(0.0, x)
return(y)
def Sigmoid(x):
y = T.nnet.sigmoid(x)
return(y)
def Tanh(x):
y = T.tanh(x)
return(y)
def Iden(x):
y = x
return(y)
class HiddenLayer(object):
"""
Class for HiddenLayer
"""
def __init__(self, rng, input, n_in, n_out, activation, W=None, b=None,
use_bias=False):
self.input = input
self.activation = activation
if W is None:
if activation.func_name == "ReLU":
W_values = numpy.asarray(0.01 * rng.standard_normal(size=(n_in, n_out)), dtype=theano.config.floatX)
else:
W_values = numpy.asarray(rng.uniform(low=-numpy.sqrt(6. / (n_in + n_out)), high=numpy.sqrt(6. / (n_in + n_out)),
size=(n_in, n_out)), dtype=theano.config.floatX)
W = theano.shared(value=W_values, name='W')
if b is None:
b_values = numpy.zeros((n_out,), dtype=theano.config.floatX)
b = theano.shared(value=b_values, name='b')
self.W = W
self.b = b
if use_bias:
lin_output = T.dot(input, self.W) + self.b
else:
lin_output = T.dot(input, self.W)
self.output = (lin_output if activation is None else activation(lin_output))
# parameters of the model
if use_bias:
self.params = [self.W, self.b]
else:
self.params = [self.W]
def _dropout_from_layer(rng, layer, p):
"""p is the probablity of dropping a unit
"""
srng = theano.tensor.shared_randomstreams.RandomStreams(rng.randint(999999))
# p=1-p because 1's indicate keep and p is prob of dropping
mask = srng.binomial(n=1, p=1-p, size=layer.shape)
# The cast is important because
# int * float32 = float64 which pulls things off the gpu
output = layer * T.cast(mask, theano.config.floatX)
return output
class DropoutHiddenLayer(HiddenLayer):
def __init__(self, rng, input, n_in, n_out,
activation, dropout_rate, use_bias, W=None, b=None):
super(DropoutHiddenLayer, self).__init__(
rng=rng, input=input, n_in=n_in, n_out=n_out, W=W, b=b,
activation=activation, use_bias=use_bias)
self.output = _dropout_from_layer(rng, self.output, p=dropout_rate)
class MLPDropout(object):
"""A multilayer perceptron with dropout"""
def __init__(self,rng,input,layer_sizes,dropout_rates,activations,use_bias=True):
#rectified_linear_activation = lambda x: T.maximum(0.0, x)
# Set up all the hidden layers
self.weight_matrix_sizes = zip(layer_sizes, layer_sizes[1:])
self.layers = []
self.dropout_layers = []
self.activations = activations
next_layer_input = input
#first_layer = True
# dropout the input
next_dropout_layer_input = _dropout_from_layer(rng, input, p=dropout_rates[0])
layer_counter = 0
for n_in, n_out in self.weight_matrix_sizes[:-1]:
next_dropout_layer = DropoutHiddenLayer(rng=rng,
input=next_dropout_layer_input,
activation=activations[layer_counter],
n_in=n_in, n_out=n_out, use_bias=use_bias,
dropout_rate=dropout_rates[layer_counter])
self.dropout_layers.append(next_dropout_layer)
next_dropout_layer_input = next_dropout_layer.output
# Reuse the parameters from the dropout layer here, in a different
# path through the graph.
next_layer = HiddenLayer(rng=rng,
input=next_layer_input,
activation=activations[layer_counter],
# scale the weight matrix W with (1-p)
W=next_dropout_layer.W * (1 - dropout_rates[layer_counter]),
b=next_dropout_layer.b,
n_in=n_in, n_out=n_out,
use_bias=use_bias)
self.layers.append(next_layer)
next_layer_input = next_layer.output
#first_layer = False
layer_counter += 1
# Set up the output layer
n_in, n_out = self.weight_matrix_sizes[-1]
dropout_output_layer = LogisticRegression(
input=next_dropout_layer_input,
n_in=n_in, n_out=n_out)
self.dropout_layers.append(dropout_output_layer)
# Again, reuse paramters in the dropout output.
output_layer = LogisticRegression(
input=next_layer_input,
# scale the weight matrix W with (1-p)
W=dropout_output_layer.W * (1 - dropout_rates[-1]),
b=dropout_output_layer.b,
n_in=n_in, n_out=n_out)
self.layers.append(output_layer)
# Use the negative log likelihood of the logistic regression layer as
# the objective.
self.dropout_negative_log_likelihood = self.dropout_layers[-1].negative_log_likelihood
self.dropout_errors = self.dropout_layers[-1].errors
self.negative_log_likelihood = self.layers[-1].negative_log_likelihood
self.errors = self.layers[-1].errors
self.testlabel = self.layers[-1].testlabel
self.testprobs = self.layers[-1].testprobs
# Grab all the parameters together.
self.params = [ param for layer in self.dropout_layers for param in layer.params ]
def predict(self, new_data):
next_layer_input = new_data
for i,layer in enumerate(self.layers):
if i<len(self.layers)-1:
next_layer_input = self.activations[i](T.dot(next_layer_input,layer.W) + layer.b)
else:
p_y_given_x = T.nnet.softmax(T.dot(next_layer_input, layer.W) + layer.b)
y_pred = T.argmax(p_y_given_x, axis=1)
return y_pred
def predict_p(self, new_data):
next_layer_input = new_data
for i,layer in enumerate(self.layers):
if i<len(self.layers)-1:
next_layer_input = self.activations[i](T.dot(next_layer_input,layer.W) + layer.b)
else:
p_y_given_x = T.nnet.softmax(T.dot(next_layer_input, layer.W) + layer.b)
return p_y_given_x
class MLP(object):
"""Multi-Layer Perceptron Class
A multilayer perceptron is a feedforward artificial neural network model
that has one layer or more of hidden units and nonlinear activations.
Intermediate layers usually have as activation function tanh or the
sigmoid function (defined here by a ``HiddenLayer`` class) while the
top layer is a softamx layer (defined here by a ``LogisticRegression``
class).
"""
def __init__(self, rng, input, n_in, n_hidden, n_out):
"""Initialize the parameters for the multilayer perceptron
:type rng: numpy.random.RandomState
:param rng: a random number generator used to initialize weights
:type input: theano.tensor.TensorType
:param input: symbolic variable that describes the input of the
architecture (one minibatch)
:type n_in: int
:param n_in: number of input units, the dimension of the space in
which the datapoints lie
:type n_hidden: int
:param n_hidden: number of hidden units
:type n_out: int
:param n_out: number of output units, the dimension of the space in
which the labels lie
"""
# Since we are dealing with a one hidden layer MLP, this will translate
# into a HiddenLayer with a tanh activation function connected to the
# LogisticRegression layer; the activation function can be replaced by
# sigmoid or any other nonlinear function
self.hiddenLayer = HiddenLayer(rng=rng, input=input,
n_in=n_in, n_out=n_hidden,
activation=T.tanh)
# The logistic regression layer gets as input the hidden units
# of the hidden layer
self.logRegressionLayer = LogisticRegression(
input=self.hiddenLayer.output,
n_in=n_hidden,
n_out=n_out)
# L1 norm ; one regularization option is to enforce L1 norm to
# be small
# negative log likelihood of the MLP is given by the negative
# log likelihood of the output of the model, computed in the
# logistic regression layer
self.negative_log_likelihood = self.logRegressionLayer.negative_log_likelihood
# same holds for the function computing the number of errors
self.errors = self.logRegressionLayer.errors
# the parameters of the model are the parameters of the two layer it is
# made out of
self.params = self.hiddenLayer.params + self.logRegressionLayer.params
class LogisticRegression(object):
"""Multi-class Logistic Regression Class
The logistic regression is fully described by a weight matrix :math:`W`
and bias vector :math:`b`. Classification is done by projecting data
points onto a set of hyperplanes, the distance to which is used to
determine a class membership probability.
"""
def __init__(self, input, n_in, n_out, W=None, b=None):
""" Initialize the parameters of the logistic regression
:type input: theano.tensor.TensorType
:param input: symbolic variable that describes the input of the
architecture (one minibatch)
:type n_in: int
:param n_in: number of input units, the dimension of the space in
which the datapoints lie
:type n_out: int
:param n_out: number of output units, the dimension of the space in
which the labels lie
"""
# initialize with 0 the weights W as a matrix of shape (n_in, n_out)
if W is None:
self.W = theano.shared(
value=numpy.zeros((n_in, n_out), dtype=theano.config.floatX),
name='W')
else:
self.W = W
# initialize the baises b as a vector of n_out 0s
if b is None:
self.b = theano.shared(
value=numpy.zeros((n_out,), dtype=theano.config.floatX),
name='b')
else:
self.b = b
# compute vector of class-membership probabilities in symbolic form
self.p_y_given_x = T.nnet.softmax(T.dot(input, self.W) + self.b)
# compute prediction as class whose probability is maximal in
# symbolic form
self.y_pred = T.argmax(self.p_y_given_x, axis=1)
# parameters of the model
self.params = [self.W, self.b]
def negative_log_likelihood(self, y):
"""Return the mean of the negative log-likelihood of the prediction
of this model under a given target distribution.
.. math::
\frac{1}{|\mathcal{D}|} \mathcal{L} (\theta=\{W,b\}, \mathcal{D}) =
\frac{1}{|\mathcal{D}|} \sum_{i=0}^{|\mathcal{D}|} \log(P(Y=y^{(i)}|x^{(i)}, W,b)) \\
\ell (\theta=\{W,b\}, \mathcal{D})
:type y: theano.tensor.TensorType
:param y: corresponds to a vector that gives for each example the
correct label
Note: we use the mean instead of the sum so that
the learning rate is less dependent on the batch size
"""
# y.shape[0] is (symbolically) the number of rows in y, i.e.,
# number of examples (call it n) in the minibatch
# T.arange(y.shape[0]) is a symbolic vector which will contain
# [0,1,2,... n-1] T.log(self.p_y_given_x) is a matrix of
# Log-Probabilities (call it LP) with one row per example and
# one column per class LP[T.arange(y.shape[0]),y] is a vector
# v containing [LP[0,y[0]], LP[1,y[1]], LP[2,y[2]], ...,
# LP[n-1,y[n-1]]] and T.mean(LP[T.arange(y.shape[0]),y]) is
# the mean (across minibatch examples) of the elements in v,
# i.e., the mean log-likelihood across the minibatch.
return -T.mean(T.log(self.p_y_given_x)[T.arange(y.shape[0]), y])
def errors(self, y):
"""Return a float representing the number of errors in the minibatch ;
zero one loss over the size of the sminibatch
:type y: theano.tensor.TensorType
:param y: corresponds to a vector that gives for each example the
correct label
"""
# check if y has same dimension of y_pred
if y.ndim != self.y_pred.ndim:
raise TypeError('y should have the same shape as self.y_pred',
('y', target.type, 'y_pred', self.y_pred.type))
# check if y is of the correct datatype
if y.dtype.startswith('int'):
# the T.neq operator returns a vector of 0s and 1s, where 1
# represents a mistake in prediction
return T.mean(T.neq(self.y_pred, y))
else:
raise NotImplementedError()
def testlabel(self):
return self.y_pred
def testprobs(self):
return self.p_y_given_x
class LeNetConvPoolLayer(object):
"""Pool Layer of a convolutional network """
def __init__(self, rng, input, filter_shape, image_shape, poolsize=(2, 2), non_linear="tanh"):
"""
Allocate a LeNetConvPoolLayer with shared variable internal parameters.
:type rng: numpy.random.RandomState
:param rng: a random number generator used to initialize weights
:type input: theano.tensor.dtensor4
:param input: symbolic image tensor, of shape image_shape
:type filter_shape: tuple or list of length 4
:param filter_shape: (number of filters, num input feature maps,
filter height,filter width)
:type image_shape: tuple or list of length 4
:param image_shape: (batch size, num input feature maps,
image height, image width)
:type poolsize: tuple or list of length 2
:param poolsize: the downsampling (pooling) factor (#rows,#cols)
"""
assert image_shape[1] == filter_shape[1]
self.input = input
self.filter_shape = filter_shape
self.image_shape = image_shape
self.poolsize = poolsize
self.non_linear = non_linear
# there are "num input feature maps * filter height * filter width"
# inputs to each hidden unit
"""numpy.prod: Return the product of array elements over a given axis."""
fan_in = numpy.prod(filter_shape[1:])
# each unit in the lower layer receives a gradient from:
# "num output feature maps * filter height * filter width" /
# pooling size
fan_out = (filter_shape[0] * numpy.prod(filter_shape[2:]) /numpy.prod(poolsize))
# initialize weights with random weights
if self.non_linear=="none" or self.non_linear=="relu":
"""self.W is the initial filter"""
self.W = theano.shared(numpy.asarray(rng.uniform(low=-0.01,high=0.01,size=filter_shape),
dtype=theano.config.floatX),borrow=True,name="W_conv")
else:
W_bound = numpy.sqrt(6. / (fan_in + fan_out))
self.W = theano.shared(numpy.asarray(rng.uniform(low=-W_bound, high=W_bound, size=filter_shape),
dtype=theano.config.floatX),borrow=True,name="W_conv")
b_values = numpy.zeros((filter_shape[0],), dtype=theano.config.floatX)
self.b = theano.shared(value=b_values, borrow=True, name="b_conv")
# convolve input feature maps with filters
"""利用theano的卷积库函数进行卷积计算
返回值Tensor of filtered images, with shape ([number images,]=100 [number filters,]=1 image height, image width).返回的img的高和宽
"""
conv_out = conv.conv2d(input=input, filters=self.W,filter_shape=self.filter_shape, image_shape=self.image_shape)
if self.non_linear=="tanh":
conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
"""max-pooling"""
self.output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
elif self.non_linear=="relu":
conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
self.output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
else:
pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
self.output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
self.params = [self.W, self.b]
def predict(self, new_data, batch_size):
"""
predict for new data
"""
img_shape = (batch_size, 1, self.image_shape[2], self.image_shape[3])
conv_out = conv.conv2d(input=new_data, filters=self.W, filter_shape=self.filter_shape, image_shape=img_shape)
if self.non_linear=="tanh":
conv_out_tanh = T.tanh(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
if self.non_linear=="relu":
conv_out_tanh = ReLU(conv_out + self.b.dimshuffle('x', 0, 'x', 'x'))
output = downsample.max_pool_2d(input=conv_out_tanh, ds=self.poolsize, ignore_border=True)
else:
pooled_out = downsample.max_pool_2d(input=conv_out, ds=self.poolsize, ignore_border=True)
output = pooled_out + self.b.dimshuffle('x', 0, 'x', 'x')
return output