nlp_xiaojiang/Ner/bert/keras_bert_layer.py
2020-11-28 09:27:07 +08:00

794 lines
36 KiB
Python

# -*- coding: UTF-8 -*-
# !/usr/bin/python
# @time :2019/5/10 10:49
# @author :Mo
# @function : 1. create model of keras-bert for get [-2] layers
# 2. create model of AttentionWeightedAverage for get avg attention pooling
# 3. create layer of
# code class NonMaskingLayer from https://github.com/jacoxu
# code class AttentionWeightedAverage from https://github.com/BrikerMan/Kashgari
# code class CRF most from https://github.com/keras-team/keras-contrib, a little of 'theano' from https://github.com/BrikerMan/Kashgari
from __future__ import absolute_import
from __future__ import division
from keras.engine import InputSpec
import keras.backend as k_keras
from keras.engine import Layer
from keras import initializers
from keras import backend as K
from keras import regularizers
from keras import activations
from keras import constraints
import warnings
import os
# crf_loss
from keras.losses import sparse_categorical_crossentropy
from keras.losses import categorical_crossentropy
class NonMaskingLayer(Layer):
"""
fix convolutional 1D can't receive masked input, detail: https://github.com/keras-team/keras/issues/4978
thanks for https://github.com/jacoxu
"""
def __init__(self, **kwargs):
self.supports_masking = True
super(NonMaskingLayer, self).__init__(**kwargs)
def build(self, input_shape):
pass
def compute_mask(self, input, input_mask=None):
# do not pass the mask to the next layers
return None
def call(self, x, mask=None):
return x
def compute_output_shape(self, input_shape):
return input_shape
class AttentionWeightedAverage(Layer):
'''
codes from: https://github.com/BrikerMan/Kashgari
detail: https://github.com/BrikerMan/Kashgari/blob/master/kashgari/tasks/classification/models.py
Computes a weighted average of the different channels across timesteps.
Uses 1 parameter pr. channel to compute the attention value for a single timestep.
'''
def __init__(self, return_attention=False, **kwargs):
self.init = initializers.get('uniform')
self.supports_masking = True
self.return_attention = return_attention
super(AttentionWeightedAverage, self).__init__(**kwargs)
def build(self, input_shape):
self.input_spec = [InputSpec(ndim=3)]
assert len(input_shape) == 3
self.W = self.add_weight(shape=(input_shape[2], 1),
name='{}_w'.format(self.name),
initializer=self.init)
self.trainable_weights = [self.W]
super(AttentionWeightedAverage, self).build(input_shape)
def call(self, x, mask=None):
# computes a probability distribution over the timesteps
# uses 'max trick' for numerical stability
# reshape is done to avoid issue with Tensorflow
# and 1-dimensional weights
logits = k_keras.dot(x, self.W)
x_shape = k_keras.shape(x)
logits = k_keras.reshape(logits, (x_shape[0], x_shape[1]))
ai = k_keras.exp(logits - k_keras.max(logits, axis=-1, keepdims=True))
# masked timesteps have zero weight
if mask is not None:
mask = k_keras.cast(mask, k_keras.floatx())
ai = ai * mask
att_weights = ai / (k_keras.sum(ai, axis=1, keepdims=True) + k_keras.epsilon())
weighted_input = x * k_keras.expand_dims(att_weights)
result = k_keras.sum(weighted_input, axis=1)
if self.return_attention:
return [result, att_weights]
return result
def get_output_shape_for(self, input_shape):
return self.compute_output_shape(input_shape)
def compute_output_shape(self, input_shape):
output_len = input_shape[2]
if self.return_attention:
return [(input_shape[0], output_len), (input_shape[0], input_shape[1])]
return (input_shape[0], output_len)
def compute_mask(self, input, input_mask=None):
if isinstance(input_mask, list):
return [None] * len(input_mask)
else:
return None
# crf_loss
def crf_nll(y_true, y_pred):
"""The negative log-likelihood for linear chain Conditional Random Field (CRF).
This loss function is only used when the `layers.CRF` layer
is trained in the "join" mode.
# Arguments
y_true: tensor with true targets.
y_pred: tensor with predicted targets.
# Returns
A scalar representing corresponding to the negative log-likelihood.
# Raises
TypeError: If CRF is not the last layer.
# About GitHub
If you open an issue or a pull request about CRF, please
add `cc @lzfelix` to notify Luiz Felix.
"""
crf, idx = y_pred._keras_history[:2]
if crf._outbound_nodes:
raise TypeError('When learn_model="join", CRF must be the last layer.')
if crf.sparse_target:
y_true = K.one_hot(K.cast(y_true[:, :, 0], 'int32'), crf.units)
X = crf._inbound_nodes[idx].input_tensors[0]
mask = crf._inbound_nodes[idx].input_masks[0]
nloglik = crf.get_negative_log_likelihood(y_true, X, mask)
# 新加的
# nloglik = k_keras.abs(nloglik)
return nloglik
def crf_loss(y_true, y_pred):
"""General CRF loss function depending on the learning mode.
# Arguments
y_true: tensor with true targets.
y_pred: tensor with predicted targets.
# Returns
If the CRF layer is being trained in the join mode, returns the negative
log-likelihood. Otherwise returns the categorical crossentropy implemented
by the underlying Keras backend.
# About GitHub
If you open an issue or a pull request about CRF, please
add `cc @lzfelix` to notify Luiz Felix.
"""
crf, idx = y_pred._keras_history[:2]
if crf.learn_mode == 'join':
return crf_nll(y_true, y_pred)
else:
if crf.sparse_target:
return sparse_categorical_crossentropy(y_true, y_pred)
else:
return categorical_crossentropy(y_true, y_pred)
# crf_marginal_accuracy, crf_viterbi_accuracy
def _get_accuracy(y_true, y_pred, mask, sparse_target=False):
"""
:param y_true:
:param y_pred:
:param mask:
:param sparse_target:
:return:
"""
y_pred = K.argmax(y_pred, -1)
if sparse_target:
y_true = K.cast(y_true[:, :, 0], K.dtype(y_pred))
else:
y_true = K.argmax(y_true, -1)
judge = K.cast(K.equal(y_pred, y_true), K.floatx())
if mask is None:
return K.mean(judge)
else:
mask = K.cast(mask, K.floatx())
return K.sum(judge * mask) / K.sum(mask)
def crf_viterbi_accuracy(y_true, y_pred):
'''Use Viterbi algorithm to get best path, and compute its accuracy.
`y_pred` must be an output from CRF.'''
crf, idx = y_pred._keras_history[:2]
X = crf._inbound_nodes[idx].input_tensors[0]
mask = crf._inbound_nodes[idx].input_masks[0]
y_pred = crf.viterbi_decoding(X, mask)
return _get_accuracy(y_true, y_pred, mask, crf.sparse_target)
def crf_marginal_accuracy(y_true, y_pred):
'''Use time-wise marginal argmax as prediction.
`y_pred` must be an output from CRF with `learn_mode="marginal"`.'''
crf, idx = y_pred._keras_history[:2]
X = crf._inbound_nodes[idx].input_tensors[0]
mask = crf._inbound_nodes[idx].input_masks[0]
y_pred = crf.get_marginal_prob(X, mask)
return _get_accuracy(y_true, y_pred, mask, crf.sparse_target)
def crf_accuracy(y_true, y_pred):
'''Ge default accuracy based on CRF `test_mode`.'''
crf, idx = y_pred._keras_history[:2]
if crf.test_mode == 'viterbi':
return crf_viterbi_accuracy(y_true, y_pred)
else:
return crf_marginal_accuracy(y_true, y_pred)
def to_tuple(shape):
"""This functions is here to fix an inconsistency between keras and tf.keras.
In tf.keras, the input_shape argument is an tuple with `Dimensions` objects.
In keras, the input_shape is a simple tuple of ints or `None`.
We'll work with tuples of ints or `None` to be consistent
with keras-team/keras. So we must apply this function to
all input_shapes of the build methods in custom layers.
"""
if os.environ.get("TF_KERAS")==1:
import tensorflow as tf
return tuple(tf.TensorShape(shape).as_list())
else:
return shape
class CRF(Layer):
"""
codes from: https://github.com/keras-team/keras-contrib
detail: https://github.com/keras-team/keras-contrib/blob/fff264273d5347613574ff533c598f55f15d4763/keras_contrib/layers/crf.py
An implementation of linear chain conditional random field (CRF).
An linear chain CRF is defined to maximize the following likelihood function:
$$ L(W, U, b; y_1, ..., y_n) := \frac{1}{Z}
\sum_{y_1, ..., y_n} \exp(-a_1' y_1 - a_n' y_n
- \sum_{k=1^n}((f(x_k' W + b) y_k) + y_1' U y_2)), $$
where:
$Z$: normalization constant
$x_k, y_k$: inputs and outputs
This implementation has two modes for optimization:
1. (`join mode`) optimized by maximizing join likelihood,
which is optimal in theory of statistics.
Note that in this case, CRF must be the output/last layer.
2. (`marginal mode`) return marginal probabilities on each time
step and optimized via composition
likelihood (product of marginal likelihood), i.e.,
using `categorical_crossentropy` loss.
Note that in this case, CRF can be either the last layer or an
intermediate layer (though not explored).
For prediction (test phrase), one can choose either Viterbi
best path (class indices) or marginal
probabilities if probabilities are needed.
However, if one chooses *join mode* for training,
Viterbi output is typically better than marginal output,
but the marginal output will still perform
reasonably close, while if *marginal mode* is used for training,
marginal output usually performs
much better. The default behavior and `metrics.crf_accuracy`
is set according to this observation.
In addition, this implementation supports masking and accepts either
onehot or sparse target.
If you open a issue or a pull request about CRF, please
add 'cc @lzfelix' to notify Luiz Felix.
# Examples
```python
from keras_contrib.layers import CRF
from keras_contrib.losses import crf_loss
from keras_contrib.metrics import crf_viterbi_accuracy
model = Sequential()
model.add(Embedding(3001, 300, mask_zero=True)(X)
# use learn_mode = 'join', test_mode = 'viterbi',
# sparse_target = True (label indice output)
crf = CRF(10, sparse_target=True)
model.add(crf)
# crf_accuracy is default to Viterbi acc if using join-mode (default).
# One can add crf.marginal_acc if interested, but may slow down learning
model.compile('adam', loss=crf_loss, metrics=[crf_viterbi_accuracy])
# y must be label indices (with shape 1 at dim 3) here,
# since `sparse_target=True`
model.fit(x, y)
# prediction give onehot representation of Viterbi best path
y_hat = model.predict(x_test)
```
The following snippet shows how to load a persisted
model that uses the CRF layer:
```python
from keras.models import load_model
from keras_contrib.losses import import crf_loss
from keras_contrib.metrics import crf_viterbi_accuracy
custom_objects={'CRF': CRF,
'crf_loss': crf_loss,
'crf_viterbi_accuracy': crf_viterbi_accuracy}
loaded_model = load_model('<path_to_model>',
custom_objects=custom_objects)
```
# Arguments
units: Positive integer, dimensionality of the output space.
learn_mode: Either 'join' or 'marginal'.
The former train the model by maximizing join likelihood while the latter
maximize the product of marginal likelihood over all time steps.
One should use `losses.crf_nll` for 'join' mode
and `losses.categorical_crossentropy` or
`losses.sparse_categorical_crossentropy` for
`marginal` mode. For convenience, simply
use `losses.crf_loss`, which will decide the proper loss as described.
test_mode: Either 'viterbi' or 'marginal'.
The former is recommended and as default when `learn_mode = 'join'` and
gives one-hot representation of the best path at test (prediction) time,
while the latter is recommended and chosen as default
when `learn_mode = 'marginal'`,
which produces marginal probabilities for each time step.
For evaluating metrics, one should
use `metrics.crf_viterbi_accuracy` for 'viterbi' mode and
'metrics.crf_marginal_accuracy' for 'marginal' mode, or
simply use `metrics.crf_accuracy` for
both which automatically decides it as described.
One can also use both for evaluation at training.
sparse_target: Boolean (default False) indicating
if provided labels are one-hot or
indices (with shape 1 at dim 3).
use_boundary: Boolean (default True) indicating if trainable
start-end chain energies
should be added to model.
use_bias: Boolean, whether the layer uses a bias vector.
kernel_initializer: Initializer for the `kernel` weights matrix,
used for the linear transformation of the inputs.
(see [initializers](../initializers.md)).
chain_initializer: Initializer for the `chain_kernel` weights matrix,
used for the CRF chain energy.
(see [initializers](../initializers.md)).
boundary_initializer: Initializer for the `left_boundary`,
'right_boundary' weights vectors,
used for the start/left and end/right boundary energy.
(see [initializers](../initializers.md)).
bias_initializer: Initializer for the bias vector
(see [initializers](../initializers.md)).
activation: Activation function to use
(see [activations](../activations.md)).
If you pass None, no activation is applied
(ie. "linear" activation: `a(x) = x`).
kernel_regularizer: Regularizer function applied to
the `kernel` weights matrix
(see [regularizer](../regularizers.md)).
chain_regularizer: Regularizer function applied to
the `chain_kernel` weights matrix
(see [regularizer](../regularizers.md)).
boundary_regularizer: Regularizer function applied to
the 'left_boundary', 'right_boundary' weight vectors
(see [regularizer](../regularizers.md)).
bias_regularizer: Regularizer function applied to the bias vector
(see [regularizer](../regularizers.md)).
kernel_constraint: Constraint function applied to
the `kernel` weights matrix
(see [constraints](../constraints.md)).
chain_constraint: Constraint function applied to
the `chain_kernel` weights matrix
(see [constraints](../constraints.md)).
boundary_constraint: Constraint function applied to
the `left_boundary`, `right_boundary` weights vectors
(see [constraints](../constraints.md)).
bias_constraint: Constraint function applied to the bias vector
(see [constraints](../constraints.md)).
input_dim: dimensionality of the input (integer).
This argument (or alternatively, the keyword argument `input_shape`)
is required when using this layer as the first layer in a model.
unroll: Boolean (default False). If True, the network will be
unrolled, else a symbolic loop will be used.
Unrolling can speed-up a RNN, although it tends
to be more memory-intensive.
Unrolling is only suitable for short sequences.
# Input shape
3D tensor with shape `(nb_samples, timesteps, input_dim)`.
# Output shape
3D tensor with shape `(nb_samples, timesteps, units)`.
# Masking
This layer supports masking for input data with a variable number
of timesteps. To introduce masks to your data,
use an [Embedding](embeddings.md) layer with the `mask_zero` parameter
set to `True`.
"""
def __init__(self, units,
learn_mode='join',
test_mode=None,
sparse_target=False,
use_boundary=True,
use_bias=True,
activation='linear',
kernel_initializer='glorot_uniform',
chain_initializer='orthogonal',
bias_initializer='zeros',
boundary_initializer='zeros',
kernel_regularizer=None,
chain_regularizer=None,
boundary_regularizer=None,
bias_regularizer=None,
kernel_constraint=None,
chain_constraint=None,
boundary_constraint=None,
bias_constraint=None,
input_dim=None,
unroll=False,
**kwargs):
super(CRF, self).__init__(**kwargs)
self.supports_masking = True
self.units = units
self.learn_mode = learn_mode
assert self.learn_mode in ['join', 'marginal']
self.test_mode = test_mode
if self.test_mode is None:
self.test_mode = 'viterbi' if self.learn_mode == 'join' else 'marginal'
else:
assert self.test_mode in ['viterbi', 'marginal']
self.sparse_target = sparse_target
self.use_boundary = use_boundary
self.use_bias = use_bias
self.activation = activations.get(activation)
self.kernel_initializer = initializers.get(kernel_initializer)
self.chain_initializer = initializers.get(chain_initializer)
self.boundary_initializer = initializers.get(boundary_initializer)
self.bias_initializer = initializers.get(bias_initializer)
self.kernel_regularizer = regularizers.get(kernel_regularizer)
self.chain_regularizer = regularizers.get(chain_regularizer)
self.boundary_regularizer = regularizers.get(boundary_regularizer)
self.bias_regularizer = regularizers.get(bias_regularizer)
self.kernel_constraint = constraints.get(kernel_constraint)
self.chain_constraint = constraints.get(chain_constraint)
self.boundary_constraint = constraints.get(boundary_constraint)
self.bias_constraint = constraints.get(bias_constraint)
self.unroll = unroll
def build(self, input_shape):
# input_shape = to_tuple(input_shape)
self.input_spec = [InputSpec(shape=input_shape)]
self.input_dim = input_shape[-1]
self.kernel = self.add_weight(shape=(self.input_dim, self.units),
name='kernel',
initializer=self.kernel_initializer,
regularizer=self.kernel_regularizer,
constraint=self.kernel_constraint)
self.chain_kernel = self.add_weight(shape=(self.units, self.units),
name='chain_kernel',
initializer=self.chain_initializer,
regularizer=self.chain_regularizer,
constraint=self.chain_constraint)
if self.use_bias:
self.bias = self.add_weight(shape=(self.units,),
name='bias',
initializer=self.bias_initializer,
regularizer=self.bias_regularizer,
constraint=self.bias_constraint)
else:
self.bias = 0
if self.use_boundary:
self.left_boundary = self.add_weight(shape=(self.units,),
name='left_boundary',
initializer=self.boundary_initializer,
regularizer=self.boundary_regularizer,
constraint=self.boundary_constraint)
self.right_boundary = self.add_weight(shape=(self.units,),
name='right_boundary',
initializer=self.boundary_initializer,
regularizer=self.boundary_regularizer,
constraint=self.boundary_constraint)
self.built = True
def call(self, X, mask=None):
if mask is not None:
assert K.ndim(mask) == 2, 'Input mask to CRF must have dim 2 if not None'
if self.test_mode == 'viterbi':
test_output = self.viterbi_decoding(X, mask)
else:
test_output = self.get_marginal_prob(X, mask)
self.uses_learning_phase = True
if self.learn_mode == 'join':
train_output = K.zeros_like(K.dot(X, self.kernel))
out = K.in_train_phase(train_output, test_output)
else:
if self.test_mode == 'viterbi':
train_output = self.get_marginal_prob(X, mask)
out = K.in_train_phase(train_output, test_output)
else:
out = test_output
return out
def compute_output_shape(self, input_shape):
return input_shape[:2] + (self.units,)
def compute_mask(self, input, mask=None):
if mask is not None and self.learn_mode == 'join':
return K.any(mask, axis=1)
return mask
def get_config(self):
config = {
'units': self.units,
'learn_mode': self.learn_mode,
'test_mode': self.test_mode,
'use_boundary': self.use_boundary,
'use_bias': self.use_bias,
'sparse_target': self.sparse_target,
'kernel_initializer': initializers.serialize(self.kernel_initializer),
'chain_initializer': initializers.serialize(self.chain_initializer),
'boundary_initializer': initializers.serialize(
self.boundary_initializer),
'bias_initializer': initializers.serialize(self.bias_initializer),
'activation': activations.serialize(self.activation),
'kernel_regularizer': regularizers.serialize(self.kernel_regularizer),
'chain_regularizer': regularizers.serialize(self.chain_regularizer),
'boundary_regularizer': regularizers.serialize(
self.boundary_regularizer),
'bias_regularizer': regularizers.serialize(self.bias_regularizer),
'kernel_constraint': constraints.serialize(self.kernel_constraint),
'chain_constraint': constraints.serialize(self.chain_constraint),
'boundary_constraint': constraints.serialize(self.boundary_constraint),
'bias_constraint': constraints.serialize(self.bias_constraint),
'input_dim': self.input_dim,
'unroll': self.unroll}
base_config = super(CRF, self).get_config()
return dict(list(base_config.items()) + list(config.items()))
@property
def loss_function(self):
warnings.warn('CRF.loss_function is deprecated '
'and it might be removed in the future. Please '
'use losses.crf_loss instead.')
return crf_loss
@property
def accuracy(self):
warnings.warn('CRF.accuracy is deprecated and it '
'might be removed in the future. Please '
'use metrics.crf_accuracy')
if self.test_mode == 'viterbi':
return crf_viterbi_accuracy
else:
return crf_marginal_accuracy
@property
def viterbi_acc(self):
warnings.warn('CRF.viterbi_acc is deprecated and it might '
'be removed in the future. Please '
'use metrics.viterbi_acc instead.')
return crf_viterbi_accuracy
@property
def marginal_acc(self):
warnings.warn('CRF.moarginal_acc is deprecated and it '
'might be removed in the future. Please '
'use metrics.marginal_acc instead.')
return crf_marginal_accuracy
@staticmethod
def softmaxNd(x, axis=-1):
m = K.max(x, axis=axis, keepdims=True)
exp_x = K.exp(x - m)
prob_x = exp_x / K.sum(exp_x, axis=axis, keepdims=True)
return prob_x
@staticmethod
def shift_left(x, offset=1):
assert offset > 0
return K.concatenate([x[:, offset:], K.zeros_like(x[:, :offset])], axis=1)
@staticmethod
def shift_right(x, offset=1):
assert offset > 0
return K.concatenate([K.zeros_like(x[:, :offset]), x[:, :-offset]], axis=1)
def add_boundary_energy(self, energy, mask, start, end):
start = K.expand_dims(K.expand_dims(start, 0), 0)
end = K.expand_dims(K.expand_dims(end, 0), 0)
if mask is None:
energy = K.concatenate([energy[:, :1, :] + start, energy[:, 1:, :]],
axis=1)
energy = K.concatenate([energy[:, :-1, :], energy[:, -1:, :] + end],
axis=1)
else:
mask = K.expand_dims(K.cast(mask, K.floatx()))
start_mask = K.cast(K.greater(mask, self.shift_right(mask)), K.floatx())
end_mask = K.cast(K.greater(self.shift_left(mask), mask), K.floatx())
energy = energy + start_mask * start
energy = energy + end_mask * end
return energy
def get_log_normalization_constant(self, input_energy, mask, **kwargs):
"""Compute logarithm of the normalization constant Z, where
Z = sum exp(-E) -> logZ = log sum exp(-E) =: -nlogZ
"""
# should have logZ[:, i] == logZ[:, j] for any i, j
logZ = self.recursion(input_energy, mask, return_sequences=False, **kwargs)
return logZ[:, 0]
def get_energy(self, y_true, input_energy, mask):
"""Energy = a1' y1 + u1' y1 + y1' U y2 + u2' y2 + y2' U y3 + u3' y3 + an' y3
"""
input_energy = K.sum(input_energy * y_true, 2) # (B, T)
# (B, T-1)
chain_energy = K.sum(K.dot(y_true[:, :-1, :],
self.chain_kernel) * y_true[:, 1:, :], 2)
if mask is not None:
mask = K.cast(mask, K.floatx())
# (B, T-1), mask[:,:-1]*mask[:,1:] makes it work with any padding
chain_mask = mask[:, :-1] * mask[:, 1:]
input_energy = input_energy * mask
chain_energy = chain_energy * chain_mask
total_energy = K.sum(input_energy, -1) + K.sum(chain_energy, -1) # (B, )
return total_energy
def get_negative_log_likelihood(self, y_true, X, mask):
"""Compute the loss, i.e., negative log likelihood (normalize by number of time steps)
likelihood = 1/Z * exp(-E) -> neg_log_like = - log(1/Z * exp(-E)) = logZ + E
"""
input_energy = self.activation(K.dot(X, self.kernel) + self.bias)
if self.use_boundary:
input_energy = self.add_boundary_energy(input_energy, mask,
self.left_boundary,
self.right_boundary)
energy = self.get_energy(y_true, input_energy, mask)
logZ = self.get_log_normalization_constant(input_energy, mask,
input_length=K.int_shape(X)[1])
nloglik = logZ + energy
if mask is not None:
nloglik = nloglik / K.sum(K.cast(mask, K.floatx()), 1)
else:
nloglik = nloglik / K.cast(K.shape(X)[1], K.floatx())
return nloglik
def step(self, input_energy_t, states, return_logZ=True):
# not in the following `prev_target_val` has shape = (B, F)
# where B = batch_size, F = output feature dim
# Note: `i` is of float32, due to the behavior of `K.rnn`
prev_target_val, i, chain_energy = states[:3]
t = K.cast(i[0, 0], dtype='int32')
if len(states) > 3:
if K.backend() == 'theano':
m = states[3][:, t:(t + 2)]
else:
m = K.tf.slice(states[3], [0, t], [-1, 2])
input_energy_t = input_energy_t * K.expand_dims(m[:, 0])
# (1, F, F)*(B, 1, 1) -> (B, F, F)
chain_energy = chain_energy * K.expand_dims(
K.expand_dims(m[:, 0] * m[:, 1]))
if return_logZ:
# # shapes: (1, B, F) + (B, F, 1) -> (B, F, F)
# energy = chain_energy + K.expand_dims(input_energy_t - prev_target_val, 2)
# new_target_val = K.logsumexp(-energy, 1) # shapes: (B, F)
# return new_target_val, [new_target_val, i + 1]
energy = chain_energy + K.expand_dims(input_energy_t - prev_target_val, 2)
new_target_val = K.logsumexp(-energy, 1)
# added from here
if len(states) > 3:
if K.backend() == 'theano':
m = states[3][:, t:(t + 2)]
else:
m = K.slice(states[3], [0, t], [-1, 2])
is_valid = K.expand_dims(m[:, 0])
new_target_val = is_valid * new_target_val + (1 - is_valid) * prev_target_val
# added until here
return new_target_val, [new_target_val, i + 1]
else:
energy = chain_energy + K.expand_dims(input_energy_t + prev_target_val, 2)
min_energy = K.min(energy, 1)
# cast for tf-version `K.rnn
argmin_table = K.cast(K.argmin(energy, 1), K.floatx())
return argmin_table, [min_energy, i + 1]
def recursion(self, input_energy, mask=None, go_backwards=False,
return_sequences=True, return_logZ=True, input_length=None):
"""Forward (alpha) or backward (beta) recursion
If `return_logZ = True`, compute the logZ, the normalization constant:
\[ Z = \sum_{y1, y2, y3} exp(-E) # energy
= \sum_{y1, y2, y3} exp(-(u1' y1 + y1' W y2 + u2' y2 + y2' W y3 + u3' y3))
= sum_{y2, y3} (exp(-(u2' y2 + y2' W y3 + u3' y3))
sum_{y1} exp(-(u1' y1' + y1' W y2))) \]
Denote:
\[ S(y2) := sum_{y1} exp(-(u1' y1 + y1' W y2)), \]
\[ Z = sum_{y2, y3} exp(log S(y2) - (u2' y2 + y2' W y3 + u3' y3)) \]
\[ logS(y2) = log S(y2) = log_sum_exp(-(u1' y1' + y1' W y2)) \]
Note that:
yi's are one-hot vectors
u1, u3: boundary energies have been merged
If `return_logZ = False`, compute the Viterbi's best path lookup table.
"""
chain_energy = self.chain_kernel
# shape=(1, F, F): F=num of output features. 1st F is for t-1, 2nd F for t
chain_energy = K.expand_dims(chain_energy, 0)
# shape=(B, F), dtype=float32
prev_target_val = K.zeros_like(input_energy[:, 0, :])
if go_backwards:
input_energy = K.reverse(input_energy, 1)
if mask is not None:
mask = K.reverse(mask, 1)
initial_states = [prev_target_val, K.zeros_like(prev_target_val[:, :1])]
constants = [chain_energy]
if mask is not None:
mask2 = K.cast(K.concatenate([mask, K.zeros_like(mask[:, :1])], axis=1),
K.floatx())
constants.append(mask2)
def _step(input_energy_i, states):
return self.step(input_energy_i, states, return_logZ)
target_val_last, target_val_seq, _ = K.rnn(_step, input_energy,
initial_states,
constants=constants,
input_length=input_length,
unroll=self.unroll)
if return_sequences:
if go_backwards:
target_val_seq = K.reverse(target_val_seq, 1)
return target_val_seq
else:
return target_val_last
def forward_recursion(self, input_energy, **kwargs):
return self.recursion(input_energy, **kwargs)
def backward_recursion(self, input_energy, **kwargs):
return self.recursion(input_energy, go_backwards=True, **kwargs)
def get_marginal_prob(self, X, mask=None):
input_energy = self.activation(K.dot(X, self.kernel) + self.bias)
if self.use_boundary:
input_energy = self.add_boundary_energy(input_energy, mask,
self.left_boundary,
self.right_boundary)
input_length = K.int_shape(X)[1]
alpha = self.forward_recursion(input_energy, mask=mask,
input_length=input_length)
beta = self.backward_recursion(input_energy, mask=mask,
input_length=input_length)
if mask is not None:
input_energy = input_energy * K.expand_dims(K.cast(mask, K.floatx()))
margin = -(self.shift_right(alpha) + input_energy + self.shift_left(beta))
return self.softmaxNd(margin)
def viterbi_decoding(self, X, mask=None):
input_energy = self.activation(K.dot(X, self.kernel) + self.bias)
if self.use_boundary:
input_energy = self.add_boundary_energy(
input_energy, mask, self.left_boundary, self.right_boundary)
argmin_tables = self.recursion(input_energy, mask, return_logZ=False)
argmin_tables = K.cast(argmin_tables, 'int32')
# backward to find best path, `initial_best_idx` can be any,
# as all elements in the last argmin_table are the same
argmin_tables = K.reverse(argmin_tables, 1)
# matrix instead of vector is required by tf `K.rnn`
initial_best_idx = [K.expand_dims(argmin_tables[:, 0, 0])]
if K.backend() == 'theano':
initial_best_idx = [K.T.unbroadcast(initial_best_idx[0], 1)]
def gather_each_row(params, indices):
n = K.shape(indices)[0]
if K.backend() == 'theano':
return params[K.T.arange(n), indices]
else:
indices = K.transpose(K.stack([K.tf.range(n), indices]))
return K.tf.gather_nd(params, indices)
def find_path(argmin_table, best_idx):
next_best_idx = gather_each_row(argmin_table, best_idx[0][:, 0])
next_best_idx = K.expand_dims(next_best_idx)
if K.backend() == 'theano':
next_best_idx = K.T.unbroadcast(next_best_idx, 1)
return next_best_idx, [next_best_idx]
_, best_paths, _ = K.rnn(find_path, argmin_tables, initial_best_idx,
input_length=K.int_shape(X)[1], unroll=self.unroll)
best_paths = K.reverse(best_paths, 1)
best_paths = K.squeeze(best_paths, 2)
return K.one_hot(best_paths, self.units)