Delete keras_bert_classify_bi_lstm.py

This commit is contained in:
yongzhuo 2019-06-11 15:40:11 +08:00 committed by GitHub
parent 1b83777e76
commit 9e9ac2a1c7
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,453 +0,0 @@
# -*- coding: UTF-8 -*-
# !/usr/bin/python
# @time :2019/5/10 18:05
# @author :Mo
# @function :classify text of bert and bi-lstm
from __future__ import division, absolute_import
from keras.objectives import sparse_categorical_crossentropy, categorical_crossentropy
from conf.path_config import path_webank_train, path_webank_dev, path_webank_test
from keras.callbacks import ModelCheckpoint, EarlyStopping, ReduceLROnPlateau
from keras.layers import GlobalAvgPool1D, GlobalMaxPool1D
from sklearn.metrics import classification_report
from keras.layers import CuDNNGRU, CuDNNLSTM
from keras.layers import TimeDistributed
from keras.layers import Bidirectional
from keras.layers import RepeatVector
from keras.layers import Bidirectional
from keras.layers import concatenate
from keras.layers import GRU, LSTM
from keras.layers import Multiply
from keras.layers import Permute
from keras.layers import Flatten
from keras.layers import Dropout
from keras.layers import Lambda
from keras.layers import Dense
from keras.models import Model
from keras import regularizers
import numpy as np
import codecs
import keras
import keras.backend as k_keras
import logging as logger
from ClassificationText.bert.keras_bert_embedding import KerasBertEmbedding
from ClassificationText.bert import args
from conf.feature_config import config_name, ckpt_name, vocab_file, max_seq_len, layer_indexes, gpu_memory_fraction
from keras_bert import Tokenizer
def attention(inputs, single_attention_vector=False):
# attention机制
time_steps = k_keras.int_shape(inputs)[1]
input_dim = k_keras.int_shape(inputs)[2]
x = Permute((2, 1))(inputs)
x = Dense(time_steps, activation='softmax')(x)
if single_attention_vector:
x = Lambda(lambda x: k_keras.mean(x, axis=1))(x)
x = RepeatVector(input_dim)(x)
a_probs = Permute((2, 1))(x)
output_attention_mul = Multiply()([inputs, a_probs])
return output_attention_mul
class BertBiLstmModel():
def __init__(self):
# logger.info("BertBiLstmModel init start!")
print("BertBiLstmModel init start!")
self.config_path, self.checkpoint_path, self.dict_path, self.max_seq_len = config_name, ckpt_name, vocab_file, max_seq_len
# reader tokenizer
self.token_dict = {}
with codecs.open(self.dict_path, 'r', 'utf8') as reader:
for line in reader:
token = line.strip()
self.token_dict[token] = len(self.token_dict)
self.tokenizer = Tokenizer(self.token_dict)
# 你可以选择一个model build有bi-lstm single、bi-lstm 3-layers、bi-lstm_attention
# self.build_model_bilstm_layers()
# self.build_model_bilstm_single()
self.build_model_bilstm_attention()
# logger.info("BertBiLstmModel init end!")
print("BertBiLstmModel init end!")
def process_single(self, texts):
# 文本预处理传入一个list返回的是ids\mask\type-ids
input_ids = []
input_masks = []
input_type_ids = []
for text in texts:
logger.info(text)
tokens_text = self.tokenizer.tokenize(text)
logger.info('Tokens:', tokens_text)
input_id, input_type_id = self.tokenizer.encode(first=text, max_len=self.max_seq_len)
input_mask = [0 if ids == 0 else 1 for ids in input_id]
input_ids.append(input_id)
input_type_ids.append(input_type_id)
input_masks.append(input_mask)
# numpy处理list
input_ids = np.array(input_ids)
input_masks = np.array(input_masks)
input_type_ids = np.array(input_type_ids)
logger.info("process ok!")
return input_ids, input_masks, input_type_ids
def process_pair(self, textss):
# 文本预处理传入一个list返回的是ids\mask\type-ids
input_ids = []
input_masks = []
input_type_ids = []
for texts in textss:
tokens_text = self.tokenizer.tokenize(texts[0])
logger.info('Tokens1:', tokens_text)
tokens_text2 = self.tokenizer.tokenize(texts[1])
logger.info('Tokens2:', tokens_text2)
input_id, input_type_id = self.tokenizer.encode(first=texts[0], second=texts[1], max_len=self.max_seq_len)
input_mask = [0 if ids == 0 else 1 for ids in input_id]
input_ids.append(input_id)
input_type_ids.append(input_type_id)
input_masks.append(input_mask)
# numpy处理list
input_ids = np.array(input_ids)
input_masks = np.array(input_masks)
input_type_ids = np.array(input_type_ids)
logger.info("process ok!")
return input_ids, input_masks, input_type_ids
def build_model_bilstm_layers(self):
if args.use_lstm:
if args.use_cudnn_cell:
layer_cell = CuDNNLSTM
else:
layer_cell = LSTM
else:
if args.use_cudnn_cell:
layer_cell = CuDNNGRU
else:
layer_cell = GRU
# bert embedding
bert_inputs, bert_output = KerasBertEmbedding().bert_encode()
# bert_output = bert_output[:0:]
# layer_get_cls = Lambda(lambda x: x[:, 0:1, :])
# bert_output = layer_get_cls(bert_output)
# print("layer_get_cls:")
# print(bert_output.shape)
# Bi-LSTM
x = Bidirectional(layer_cell(units=args.units, return_sequences=args.return_sequences,
kernel_regularizer=regularizers.l2(args.l2 * 0.1),
recurrent_regularizer=regularizers.l2(args.l2)
))(bert_output)
# blstm_layer = TimeDistributed(Dropout(args.keep_prob))(blstm_layer) 这个用不了,好像是输入不对, dims<3吧
x = Dropout(args.keep_prob)(x)
x = Bidirectional(layer_cell(units=args.units, return_sequences=args.return_sequences,
kernel_regularizer=regularizers.l2(args.l2 * 0.1),
recurrent_regularizer=regularizers.l2(args.l2)))(x)
x = Dropout(args.keep_prob)(x)
x = Bidirectional(layer_cell(units=args.units, return_sequences=args.return_sequences,
kernel_regularizer=regularizers.l2(args.l2 * 0.1),
recurrent_regularizer=regularizers.l2(args.l2)))(x)
x = Dropout(args.keep_prob)(x)
# 平均池化、最大池化拼接
avg_pool = GlobalAvgPool1D()(x)
max_pool = GlobalMaxPool1D()(x)
print(max_pool.shape)
print(avg_pool.shape)
concat = concatenate([avg_pool, max_pool])
x = Dense(int(args.units / 4), activation="relu")(concat)
x = Dropout(args.keep_prob)(x)
# 最后就是softmax
dense_layer = Dense(args.label, activation=args.activation)(x)
output_layers = [dense_layer]
self.model = Model(bert_inputs, output_layers)
def build_model_bilstm_attention(self):
if args.use_lstm:
if args.use_cudnn_cell:
layer_cell = CuDNNLSTM
else:
layer_cell = LSTM
else:
if args.use_cudnn_cell:
layer_cell = CuDNNGRU
else:
layer_cell = GRU
# bert embedding
bert_inputs, bert_output = KerasBertEmbedding().bert_encode()
# Bi-LSTM
x = Bidirectional(layer_cell(units=args.units, return_sequences=args.return_sequences,
kernel_regularizer=regularizers.l2(args.l2 * 0.1),
recurrent_regularizer=regularizers.l2(args.l2)
))(bert_output)
x = TimeDistributed(Dropout(args.keep_prob))(x) # 这个用不了,好像是输入不对, dims<3吧
x = attention(x)
x = Flatten()(x)
x = Dropout(args.keep_prob)(x)
# # 平均池化、最大池化拼接
# avg_pool = GlobalAvgPool1D()(x)
# max_pool = GlobalMaxPool1D()(x)
# print(max_pool.shape)
# print(avg_pool.shape)
# concat = concatenate([avg_pool, max_pool])
# x = Dense(int(args.units/4), activation="relu")(concat)
# x = Dropout(args.keep_prob)(x)
# 最后就是softmax
dense_layer = Dense(args.label, activation=args.activation)(x)
output_layers = [dense_layer]
self.model = Model(bert_inputs, output_layers)
def build_model_bilstm_single(self):
if args.use_lstm:
if args.use_cudnn_cell:
layer_cell = CuDNNLSTM
else:
layer_cell = LSTM
else:
if args.use_cudnn_cell:
layer_cell = CuDNNGRU
else:
layer_cell = GRU
# bert embedding
bert_inputs, bert_output = KerasBertEmbedding().bert_encode()
# Bi-LSTM
x = Bidirectional(layer_cell(units=args.units, return_sequences=args.return_sequences,
kernel_regularizer=regularizers.l2(args.l2 * 0.1),
recurrent_regularizer=regularizers.l2(args.l2)
))(bert_output)
x = Dropout(args.keep_prob)(x)
# 最后就是softmax
dense_layer = Dense(args.label, activation=args.activation)(x)
output_layers = [dense_layer]
self.model = Model(bert_inputs, output_layers)
def compile_model(self):
self.model.compile(optimizer=args.optimizers,
loss=categorical_crossentropy,
metrics=args.metrics)
def callback(self):
cb = [ModelCheckpoint(args.path_save_model, monitor='val_loss',
verbose=1, save_best_only=True, save_weights_only=False, mode='min'),
EarlyStopping(min_delta=1e-8, patience=10, mode='min'),
ReduceLROnPlateau(factor=0.2, patience=6, verbose=0, mode='min', epsilon=1e-6, cooldown=4, min_lr=1e-8)
]
return cb
def fit(self, x_train, y_train, x_dev, y_dev):
self.model.fit(x_train, y_train, batch_size=args.batch_size,
epochs=args.epochs, validation_data=(x_dev, y_dev),
shuffle=True,
callbacks=self.callback())
self.model.save(args.path_save_model)
def load_model(self):
print("BertBiLstmModel load_model start!")
# logger.info("BertBiLstmModel load_model start!")
self.model.load_weights(args.path_save_model)
# logger.info("BertBiLstmModel load_model end+!")
print("BertBiLstmModel load_model end+!")
def predict(self, sen_1, sen_2):
input_ids, input_masks, input_type_ids = self.process_pair([[sen_1, sen_2]])
return self.model.predict([input_ids, input_masks], batch_size=1)
def predict_list(self, questions):
label_preds = []
for questions_pair in questions:
input_ids, input_masks, input_type_ids = self.process_pair([questions_pair])
label_pred = self.model.predict([input_ids, input_masks], batch_size=1)
label_preds.append(label_pred[0])
return label_preds
def classify_single_corpus(bert_model):
# 数据预处理
from utils.text_tools import text_preprocess, txtRead, txtWrite
from conf.path_config import path_webank_sim
import random
webank_q_2_l = txtRead(path_webank_sim, encodeType='gbk')
questions = []
labels = []
for ques_label in webank_q_2_l[1:]:
q_2_l = ques_label.split(',')
q_2 = "".join(q_2_l[:-1])
label = q_2_l[-1]
questions.append(text_preprocess(q_2))
label_int = int(label)
labels.append([0, 1] if label_int == 1 else [1, 0])
questions = np.array(questions)
labels = np.array(labels)
index = [i for i in range(len(labels))]
random.shuffle(index)
questions = questions[index]
labels = labels[index]
len_train = int(len(labels) * 0.9)
train_x, train_y = questions[0:len_train], labels[0:len_train]
test_x, test_y = questions[len_train:], labels[len_train:]
input_ids, input_masks, input_type_ids = bert_model.process_single(train_x)
input_ids2, input_masks2, input_type_ids2 = bert_model.process_single(test_x)
return train_x, train_y, test_x, test_y, input_ids, input_masks, input_type_ids, input_ids2, input_masks2, input_type_ids2
def classify_pair_corpus(bert_model):
# 数据预处理
from utils.text_tools import text_preprocess, txtRead, txtWrite
from conf.path_config import path_webank_sim
import random
webank_q_2_l = txtRead(path_webank_sim, encodeType='gbk')
questions = []
labels = []
for ques_label in webank_q_2_l[1:]:
q_2_l = ques_label.split(',')
q_1 = q_2_l[0]
q_2 = "".join(q_2_l[1:-1])
label = q_2_l[-1]
questions.append([text_preprocess(q_1), text_preprocess(q_2)])
label_int = int(label)
labels.append([0, 1] if label_int == 1 else [1, 0])
questions = np.array(questions)
labels = np.array(labels)
index = [i for i in range(len(labels))]
random.shuffle(index)
questions = questions[index]
labels = labels[index]
len_train = int(len(labels) * 0.9)
train_x, train_y = questions[0:len_train], labels[0:len_train]
test_x, test_y = questions[len_train:], labels[len_train:]
input_ids, input_masks, input_type_ids = bert_model.process_pair(train_x)
input_ids2, input_masks2, input_type_ids2 = bert_model.process_pair(test_x)
return train_x, train_y, test_x, test_y, input_ids, input_masks, input_type_ids, input_ids2, input_masks2, input_type_ids2
def classify_pair_corpus_webank(bert_model, path_webank):
# 数据预处理
from utils.text_tools import text_preprocess, txtRead, txtWrite
import random
webank_q_2_l = txtRead(path_webank, encodeType='utf-8')
questions = []
labels = []
for ques_label in webank_q_2_l[1:]:
q_2_l = ques_label.split(',')
q_1 = q_2_l[0]
q_2 = "".join(q_2_l[1:-1])
label = q_2_l[-1]
questions.append([text_preprocess(q_1), text_preprocess(q_2)])
label_int = int(label)
labels.append([0, 1] if label_int == 1 else [1, 0])
questions = np.array(questions)
labels = np.array(labels)
input_ids, input_masks, input_type_ids = bert_model.process_pair(questions)
return questions, labels, input_ids, input_masks, input_type_ids
def train():
# 1. trian
bert_model = BertBiLstmModel()
bert_model.compile_model()
_, labels_train, input_ids_train, input_masks_train, _ = classify_pair_corpus_webank(bert_model, path_webank_train)
_, labels_dev, input_ids_dev, input_masks_dev, _ = classify_pair_corpus_webank(bert_model, path_webank_dev)
# questions_test, labels_test, input_ids_test, input_masks_test, _ = classify_pair_corpus_webank(bert_model, path_webank_test)
print("process corpus ok!")
bert_model.fit([input_ids_train, input_masks_train], labels_train, [input_ids_dev, input_masks_dev], labels_dev)
print("bert_model fit ok!")
def tet():
# 2.test
bert_model = BertBiLstmModel()
bert_model.load_model()
questions_test, labels_test, input_ids_test, input_masks_test, _ = classify_pair_corpus_webank(bert_model,
path_webank_test)
print('predict_list start! you will wait for a few minutes')
labels_pred = bert_model.predict_list(questions_test)
print('predict_list end!')
labels_pred_np = np.array(labels_pred)
labels_pred_np_arg = np.argmax(labels_pred_np, axis=1)
labels_test_np = np.array(labels_test)
labels_test_np_arg = np.argmax(labels_test_np, axis=1)
target_names = ['不相似', '相似']
report_predict = classification_report(labels_test_np_arg, labels_pred_np_arg,
target_names=target_names, digits=9)
print(report_predict)
def predict():
# 3. predict
bert_model = BertBiLstmModel()
bert_model.load_model()
pred = bert_model.predict(sen_1='jy', sen_2='myz')
print(pred[0][1])
while True:
print("sen_1: ")
sen_1 = input()
print("sen_2: ")
sen_2 = input()
pred = bert_model.predict(sen_1=sen_1, sen_2=sen_2)
print(pred[0][1])
if __name__ == "__main__":
train()
# tet()
# predict()
# # classify single webank and ali
# train_x, train_y, test_x, test_y, input_ids, input_masks, input_type_ids, input_ids2, input_masks2, input_type_ids2 = classify_single_corpus(bert_model)
# # classify pair
# train_x, train_y, test_x, test_y, input_ids, input_masks, input_type_ids, input_ids2, input_masks2, input_type_ids2 = classify_pair_corpus(bert_model)
# result of train 100/31 all spare, single bi-lstm
# 18017/18017 [==============================] - 110s 6ms/step - loss: 0.2321 - acc: 0.9079 - val_loss: 0.5854 - val_acc: 0.7827
# result of train 100/100 cls
# 18017/18017 [==============================] - 82s 5ms/step - loss: 0.5843 - acc: 0.6938 - val_loss: 0.5537 - val_acc: 0.7093
# result of train 100/24 1 lstm single
# 18017/18017 [==============================] - 95s 5ms/step - loss: 0.4559 - acc: 0.8015 - val_loss: 0.5184 - val_acc: 0.7682
# result of train 100/11 3 lstm MaxPool1D
# 18017/18017 [==============================] - 91s 5ms/step - loss: 0.2837 - acc: 0.8863 - val_loss: 0.4547 - val_acc: 0.7982
# result of train 100/8 3 lstm AvgPool1D
# 18017/18017 [==============================] - 91s 5ms/step - loss: 0.3544 - acc: 0.8460 - val_loss: 0.4707 - val_acc: 0.7897
# result of train 100/7 3 lstm MaxPool1D、AvgPool1D
# 18017/18017 [==============================] - 89s 5ms/step - loss: 0.4505 - acc: 0.8031 - val_loss: 0.4728 - val_acc: 0.7742
# test data of tdt; result of train 100/2 3 lstm MaxPool1D、AvgPool1D
# precision recall f1-score support
# 不相似 0.78 0.77 0.77 5000
# 相似 0.77 0.78 0.78 5000
# avg / total 0.78 0.78 0.78 10000
# test data of tdt; result of train 100/11 1 lstm-attention
# precision recall f1-score support
# 不相似 0.788990826 0.774000000 0.781423523 5000
# 相似 0.778213935 0.793000000 0.785537395 5000
# avg / total 0.783602380 0.783500000 0.783480459 10000