add augment-nmt and augment-simbert

This commit is contained in:
yongzhuo 2021-09-23 11:34:12 +08:00
parent 0eba3a83d2
commit 8b427f3a20
11 changed files with 438 additions and 0 deletions

View File

@ -52,6 +52,18 @@
- transformer
- GAN
## 预训练模型-UMILM
使用BERT(UNILM)的生成能力, 即BERT的NSP句对任务
- simbert(bert + unilm + adv): [https://github.com/ZhuiyiTechnology/simbert](https://github.com/ZhuiyiTechnology/simbert)
- simbert: [鱼与熊掌兼得融合检索和生成的SimBERT模型](https://spaces.ac.cn/archives/7427)
- roformer-sim: [https://github.com/ZhuiyiTechnology/roformer-sim](https://github.com/ZhuiyiTechnology/roformer-sim)
- simbert-v2(roformer + unilm + adv + bart + distill): [SimBERTv2来了融合检索和生成的RoFormer-Sim模型](https://spaces.ac.cn/archives/8454)
## 回译(开源模型效果不是很好)
中文转化成其他语言(如英语), 其他语言(如英语)转化成中文, Helsinki-NLP开源的预训练模型
- opus-mt-en-zh: https://huggingface.co/Helsinki-NLP/opus-mt-en-zh
- opus-mt-zh-en: https://huggingface.co/Helsinki-NLP/opus-mt-zh-en
# 参考/感谢
* eda_chinese[https://github.com/zhanlaoban/eda_nlp_for_Chinese](https://github.com/zhanlaoban/eda_nlp_for_Chinese)

View File

@ -0,0 +1,11 @@
# Augment NMT
## 回译(开源模型效果不是很好)
中文转化成其他语言(如英语), 其他语言(如英语)转化成中文, Helsinki-NLP开源的预训练模型
- opus-mt-en-zh: https://huggingface.co/Helsinki-NLP/opus-mt-en-zh
- opus-mt-zh-en: https://huggingface.co/Helsinki-NLP/opus-mt-zh-en
## 备注
开源模型的效果不是那么理想, 只能少部分生成, 比如一条

View File

@ -0,0 +1,5 @@
# !/usr/bin/python
# -*- coding: utf-8 -*-
# @time : 2021/9/22 21:04
# @author : Mo
# @function:

View File

@ -0,0 +1,96 @@
# !/usr/bin/python
# -*- coding: utf-8 -*-
# @time : 2021/9/22 21:37
# @author : Mo
# @function: NMT of Helsinki-NLP
# 下载地址:
# opus-mt-en-zh: https://huggingface.co/Helsinki-NLP/opus-mt-en-zh
# opus-mt-zh-en: https://huggingface.co/Helsinki-NLP/opus-mt-zh-en
from transformers import (AutoModelForSeq2SeqLM, AutoTokenizer, pipeline)
import time
import os
class BackTranslate:
def __init__(self, pretrained_dir):
# zh-to-en
tokenizer = AutoTokenizer.from_pretrained(os.path.join(pretrained_dir, "Helsinki-NLP/opus-mt-zh-en"))
model = AutoModelForSeq2SeqLM.from_pretrained(os.path.join(pretrained_dir, "Helsinki-NLP/opus-mt-zh-en"))
# en-to-zh
tokenizer_back_translate = AutoTokenizer.from_pretrained(os.path.join(pretrained_dir, "Helsinki-NLP/opus-mt-en-zh"))
model_back_translate = AutoModelForSeq2SeqLM.from_pretrained(os.path.join(pretrained_dir, "Helsinki-NLP/opus-mt-en-zh"))
# pipeline
self.zh2en = pipeline("translation_zh_to_en", model=model, tokenizer=tokenizer)
self.en2zh = pipeline("translation_en_to_zh", model=model_back_translate, tokenizer=tokenizer_back_translate)
def back_translate(self, text):
""" 回译 """
text_en = self.zh2en(text, max_length=510)[0]["translation_text"]
print("text_en:", text_en)
text_back = self.en2zh(text_en, max_length=510)[0]["translation_text"]
print("text_back:", text_back)
return text_back
if __name__ == '__main__':
pretrained_dir = "D:/soft_install/dataset/bert-model/translate"
bt = BackTranslate(pretrained_dir)
datas = [{"text": "平乐县古称昭州隶属于广西壮族自治区桂林市位于广西东北部桂林市东南部东临钟山县南接昭平西北毗邻阳朔北连恭城总面积1919.34平方公里。"},
{"text": "平乐县主要旅游景点有榕津千年古榕、冷水石景苑、仙家温泉、桂江风景区、漓江风景区等,平乐县为漓江分界点,平乐以北称漓江,以南称桂江,是著名的大桂林旅游区之一。"},
{"text": "印岭玲珑,昭水晶莹,环绕我平中。青年的乐园,多士受陶熔。生活自觉自治,学习自发自动。五育并重,手脑并用。迎接新潮流,建设新平中"},
{"text": "桂林山水甲天下, 阳朔山水甲桂林"},
{"text": "三国一统天下"},
{"text": "世间万物皆系于其上"},
{"text": "2020年真是一个糟糕的年代, 进入20年代新冠爆发、经济下行什么的都来了。"},
{"text": "仿佛一切都变得不那么重要了。"},
{"text": "苹果多少钱一斤"}
]
time_start = time.time()
for da in datas:
text = da.get("text", "")
bt.back_translate(text)
time_total = time.time() - time_start
print("time_total:{}".format(time_total))
print("time_per:{}".format(time_total / len(datas)))
while True:
print("请输入:")
ques = input()
res = bt.back_translate(ques)
print("####################################################")
# 下载地址:
# opus-mt-en-zh: https://huggingface.co/Helsinki-NLP/opus-mt-en-zh
# opus-mt-zh-en: https://huggingface.co/Helsinki-NLP/opus-mt-zh-en
# 备注: 翻译效果不大好
"""
text_en: Ping Lei County, anciently known as Zhao County, belongs to the city of Gui Lin, Guangxi Liang Autonomous Region, and is located in the north-east of Guangxi, south-east of the city of Gui Lin, eastern Pingshan County, south-west Su Ping, north-west of Yangyon and north-west of the city of Lilongqi, with a total area of 1919.34 square kilometres.
text_back: 平莱县,古代称为赵县,属于广西梁自治区Gui Lin市,位于广西东北Gui Lin市东南Pingshan县东南Su Ping西南Yangyon西北和Lilongqi市西北,总面积1919.34平方公里
text_en: The main tourist attractions in the district of Ping Lei are Xin Xianjin Quan, Cold Water Qing Qing, Qingjiang, Qingjiang, Qingjiang, etc. The district of Ping Le is one of the well-known Grand Gui Lin tourist areas, which is known as Jingjiang, north of Ping Lei and south of Ping Lei.
text_back: 平莱区的主要旅游景点为新贤进泉冷水清清青江青江青江青江等 平来区是著名的大桂林旅游区之一,称为青江,位于平莱以北和平莱以南
text_en: The young man's garden, the Doss, is molten with pottery. Life is self-governing, learning self-involvement. It's full and heavy, and the hands and brains work together. It takes a new tide and builds a new flat.
text_back: 年轻人的花园,多斯人,被陶器熔化了生活是自治的,学习自我参与生活是满的和沉重的,手和大脑一起工作它需要新的潮水,建造新的公寓
text_en: Guilin Mountain Watermarin, Sunshaw Hill Watermarin
text_back: 古林山水马林桑肖山水马林
text_en: All three of us.
text_back: 我们三个人
text_en: Everything in the world is in it.
text_back: 世界上所有的东西都在里面
text_en: The year 2020 was a really bad time, and in the 20s, the crown broke out, the economy went down, everything came up.
text_back: 2020年是一个非常糟糕的时期, 在20年代,王冠崩盘, 经济下滑,一切都出现了
text_en: As if everything had become less important.
text_back: 仿佛一切都变得不重要了
text_en: How much is an apple?
text_back: 苹果多少钱?
"""

View File

@ -0,0 +1,3 @@
tensorflow-gpu==1.15.2
transformers==0.4.10

View File

@ -0,0 +1,12 @@
# Augment Simbert
## 预训练模型-UMILM
使用BERT(UNILM)的生成能力, 即BERT的NSP句对任务
- simbert(bert + unilm + adv): [https://github.com/ZhuiyiTechnology/simbert](https://github.com/ZhuiyiTechnology/simbert)
- simbert: [鱼与熊掌兼得融合检索和生成的SimBERT模型](https://spaces.ac.cn/archives/7427)
- roformer-sim: [https://github.com/ZhuiyiTechnology/roformer-sim](https://github.com/ZhuiyiTechnology/roformer-sim)
- simbert-v2(roformer + unilm + adv + bart + distill): [SimBERTv2来了融合检索和生成的RoFormer-Sim模型](https://spaces.ac.cn/archives/8454)
## 备注
效果还是比较好的, 可以生成多个相似句子, 但是生成式的模型一般都比较慢。

View File

@ -0,0 +1,5 @@
# !/usr/bin/python
# -*- coding: utf-8 -*-
# @time : 2021/9/18 21:12
# @author : Mo
# @function:

View File

@ -0,0 +1,155 @@
# -*- coding: UTF-8 -*-
# !/usr/bin/python
# @time :2019/4/9 23:05
# @author :Mo
# @function :SimBERT再训练BERT-base(NSP任务), UNILM的生成能力
# @reference:https://github.com/ZhuiyiTechnology/roformer-sim
# 目前仅保证支持 Tensorflow 1.x + Keras <= 2.3.1 + bert4keras>=0.10.6。
# 具体用法请看 https://github.com/bojone/bert4keras/blob/8ffb46a16a79f87aa8cdf045df7994036b4be47d/bert4keras/snippets.py#L580
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from bert4keras.snippets import sequence_padding, AutoRegressiveDecoder
from bert4keras.models import build_transformer_model
from bert4keras.tokenizers import Tokenizer
from bert4keras.backend import keras, K
import numpy as np
import time
# bert配置
# BERT_DIR = "D:/soft_install/dataset/bert-model/zuiyi/chinese_roformer-sim-char_L-12_H-768_A-12"
BERT_DIR = "D:/soft_install/dataset/bert-model/zuiyi/chinese_roformer-sim-char_L-6_H-384_A-6"
config_path = BERT_DIR + "/bert_config.json"
checkpoint_path = BERT_DIR + "/bert_model.ckpt"
dict_path = BERT_DIR + "/vocab.txt"
maxlen = 128
# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True) # 建立分词器
# 建立加载模型
bert = build_transformer_model(
config_path,
checkpoint_path,
with_pool='linear',
model='roformer',
application='unilm',
return_keras_model=False,
)
encoder = keras.models.Model(bert.model.inputs, bert.model.outputs[0])
seq2seq = keras.models.Model(bert.model.inputs, bert.model.outputs[1])
class SynonymsGenerator(AutoRegressiveDecoder):
"""seq2seq解码器
"""
@AutoRegressiveDecoder.wraps(default_rtype='probas')
def predict(self, inputs, output_ids, step):
token_ids, segment_ids = inputs
token_ids = np.concatenate([token_ids, output_ids], 1)
segment_ids = np.concatenate([segment_ids, np.ones_like(output_ids)], 1)
return self.last_token(seq2seq).predict([token_ids, segment_ids])
def generate(self, text, n=1, topp=0.95, mask_idxs=[]):
token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen)
for i in mask_idxs:
token_ids[i] = tokenizer._token_mask_id
output_ids = self.random_sample([token_ids, segment_ids], n, topp=topp) # 基于随机采样
return [tokenizer.decode(ids) for ids in output_ids]
synonyms_generator = SynonymsGenerator(start_id=None, end_id=tokenizer._token_end_id, maxlen=maxlen)
def gen_synonyms(text, n=100, k=20):
""""含义: 产生sent的n个相似句然后返回最相似的k个。
做法用seq2seq生成并用encoder算相似度并排序
"""
r = synonyms_generator.generate(text, n)
r = [i for i in set(r) if i != text]
r = [text] + r
X, S = [], []
for t in r:
x, s = tokenizer.encode(t)
X.append(x)
S.append(s)
X = sequence_padding(X)
S = sequence_padding(S)
Z = encoder.predict([X, S])
Z /= (Z**2).sum(axis=1, keepdims=True)**0.5
argsort = np.dot(Z[1:], -Z[0]).argsort()
return [r[i + 1] for i in argsort[:k]]
if __name__ == '__main__':
datas = [{"text": "平乐县古称昭州隶属于广西壮族自治区桂林市位于广西东北部桂林市东南部东临钟山县南接昭平西北毗邻阳朔北连恭城总面积1919.34平方公里。"},
{"text": "平乐县主要旅游景点有榕津千年古榕、冷水石景苑、仙家温泉、桂江风景区、漓江风景区等,平乐县为漓江分界点,平乐以北称漓江,以南称桂江,是著名的大桂林旅游区之一。"},
{"text": "印岭玲珑,昭水晶莹,环绕我平中。青年的乐园,多士受陶熔。生活自觉自治,学习自发自动。五育并重,手脑并用。迎接新潮流,建设新平中"},
{"text": "桂林山水甲天下, 阳朔山水甲桂林"},
{"text": "三国一统天下"},
{"text": "世间万物皆系于其上"},
{"text": "2020年真是一个糟糕的年代, 进入20年代新冠爆发、经济下行什么的都来了。"},
{"text": "仿佛一切都变得不那么重要了。"},
{"text": "苹果多少钱一斤"}
]
time_start = time.time()
for da in datas:
text = da.get("text", "")
res = gen_synonyms(text)
print(res)
time_total = time.time()-time_start
print("time_total:{}".format(time_total))
print("time_per:{}".format(time_total/len(datas)/20))
while True:
print("请输入:")
text = input()
res = gen_synonyms(text)
print(res)
['平乐县古称昭州,隶属于广西壮族自治区桂林市,位于广西东北部,桂林市东南部,东临钟山县,西毗邻阳朔,北连恭城',
'平乐县古称昭州隶属于广西东北部桂林市东南部东临钟山县南接昭平西北毗邻阳朔北连恭城总面积1919.',
'平乐县隶属于广西壮族自治区桂林市,位于广西东北部,桂林市东南部,东临钟山县,南接昭平,西北毗邻阳朔,北连恭',
'平乐县,隶属于广西壮族自治区桂林市,位于广西东北部,桂林市东南部,东临钟山县,南接昭平,西北毗邻阳朔,北连',
'平乐县,属于广西壮族自治区桂林市,位于广西东北部,桂林市东南部,东临钟山县,南接昭平,西北毗邻阳朔,北连恭',
'平乐县,古称昭州,隶属于广西壮族自治区桂林市,位于广西东北部,桂林市东南部,东临钟山县,南接昭平',
'平乐县,古称昭州,隶属于广西壮族自治区桂林市,位于广西东北部,桂林市东南部,东临钟山县,南接昭平县。',
'平乐县,隶属于广西壮族自治区桂林市,位于广西东北部,桂林市东南部,东临钟山县,南接昭平,西北毗邻阳朔',
'平乐县古称昭州位于广西东北部桂林市东南部东临钟山县南接昭平西北毗邻阳朔北连恭城总面积1919.34',
'平乐县,隶属于广西壮族自治区桂林市,位于广西东北部,桂林市东南部,东临钟山县,南接昭平,西北毗邻阳朔。',
'平乐县,隶属于广西壮族自治区桂林市,位于广西东北部,桂林市东南部,东临钟山县,南接昭平县,西北毗邻阳朔县。',
'平乐县隶属于广西壮族自治区桂林市,位于广西东北部,桂林市东南部,东临钟山县,南接昭平,西北毗邻阳朔',
'平乐县隶属于广西壮族自治区桂林市,位于广西东北部,桂林市东南部,东临钟山县,南接昭平,西北毗邻阳朔。',
'昭平县,隶属于广西壮族自治区桂林市,位于广西东北部,桂林市东南部,东临钟山县,南接昭平,西北毗邻阳朔,北连',
'昭乐县隶属于广西壮族自治区桂林市,位于广西东北部,桂林市东南部,东临钟山县,南接昭平,西北毗邻阳朔。',
'昭州,隶属于广西壮族自治区桂林市,位于广西东北部,桂林市东南部,东临钟山县,南接昭平,西北毗邻阳朔,北连恭',
'平乐县,古称昭州,隶属于广西壮族自治区桂林市,位于广西东北部,桂林市东南部,东临钟山县',
'广西壮族自治区桂林市隶属于广西东北部桂林市东南部东临钟山县南接昭平西北毗邻阳朔北连恭城总面积1919',
'平乐县,隶属于广西壮族自治区桂林市,位于广西东北部,桂林市东南部,东临钟山县,南接昭平',
'广西壮族自治区桂林市位于广西东北部桂林市东南部东临钟山县南接昭平西北毗邻阳朔北连恭城总面积1919']
['榕津千年古榕、冷水石景苑、仙家温泉、桂江风景区、漓江风景区等,平乐县为漓江分界点,平乐以北称漓江。',
'景点主要就是榕津千年古榕、冷水石景苑、仙家温泉、桂江风景区、漓江风景区等,平乐县为漓江分界点',
'主要景点有榕津千年古榕、冷水石景苑、仙家温泉、桂江风景区、漓江风景区等,平乐以北称漓江,以南称桂',
'景点有榕津千年古榕、冷水石景苑、仙家温泉、桂江风景区、漓江风景区等,平乐以北称漓江,以南称桂江',
'榕津千年古榕、冷水石景苑、仙家温泉、桂江风景区、漓江风景区等,平乐县为漓江分界点',
'榕津千年古榕、冷水石景苑、仙家温泉、桂江风景区、漓江风景区等,平乐县为漓江分界点。',
'这个景点主要有榕津千年古榕、冷水石景苑、仙家温泉、桂江风景区、漓江风景区等,平乐以北称漓江,以南称',
'1. 榕津千年古榕、冷水石景苑、仙家温泉、桂江风景区、漓江风景区等,平乐县为漓江分界点。',
'第一,平乐县的主要旅游景点有榕津千年古榕、冷水石景苑、仙家温泉、桂江风景区、漓江风景区等。',
'平乐县主要旅游景点有榕津千年古榕、冷水石景苑、仙家温泉、桂江风景区、漓江风景区等。',
'学校主要旅游景点有榕津千年古榕、冷水石景苑、仙家温泉、桂江风景区、漓江风景区等,平乐以北称漓江。',
'1、榕津千年古榕、冷水石景苑、仙家温泉、桂江风景区、漓江风景区等平乐以北称漓江以南称桂江。',
'宜宾市榕津千年古榕、冷水石景苑、仙家温泉、漓江风景区等,普洱山为漓江分界点,平乐以北称漓江。',
'花开湖畔的景观特色:榕津千年古榕、冷水石景苑、仙家温泉、桂江风景区、漓江风景区等,平乐以北称漓江',
'广州市榕津千年古榕、冷水石景苑、仙家温泉、漓江风景区、漓江风景区等,平乐县为漓江分界点。',
'该景区主要旅游景点有:榕津千年古榕、冷水石景苑、仙家温泉、桂江风景区、漓江风景区等。',
'郴州市永化区榕津千年古榕、冷水石景苑、仙家温泉、桂江风景区、漓江风景区等,桂江县为漓江分界点,平',
'公益群岛水平县主要旅游景点有榕津千年古榕、冷水石景苑、仙家温泉、桂江风景区、漓江风景区等',
'此处主要是桂江最为优秀的桂江旅游区,主要是榕津千年古榕、冷水石景苑、仙家温泉、桂江风景区等。',
'桂江“大桂林”景点”的三角半南边有榕津千年古榕、冷水石景苑、仙家温泉、桂江风景区、漓江风景区等。']

View File

@ -0,0 +1,135 @@
# -*- coding: UTF-8 -*-
# !/usr/bin/python
# @time :2019/4/9 23:05
# @author :Mo
# @function :SimBERT再训练BERT-base(NSP任务), UNILM的生成能力
# @reference:https://github.com/bojone/bert4keras
# 目前仅保证支持 Tensorflow 1.x + Keras <= 2.3.1 + bert4keras>=0.10.6。
# 具体用法请看 https://github.com/bojone/bert4keras/blob/8ffb46a16a79f87aa8cdf045df7994036b4be47d/bert4keras/snippets.py#L580
import os
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
from bert4keras.snippets import sequence_padding, AutoRegressiveDecoder
from bert4keras.models import build_transformer_model
from bert4keras.tokenizers import Tokenizer
from bert4keras.backend import keras, K
import numpy as np
import time
# bert配置
# BERT_DIR = "D:/soft_install/dataset/bert-model/chinese_L-12_H-768_A-12"
# BERT_DIR = "D:/soft_install/dataset/bert-model/zuiyi/chinese_roberta_L-4_H-312_A-12_K-104"
# BERT_DIR = "D:/soft_install/dataset/bert-model/zuiyi/chinese_roberta_L-6_H-384_A-12_K-128"
# BERT_DIR = "D:/soft_install/dataset/bert-model/zuiyi/chinese_simbert_L-4_H-312_A-12"
# BERT_DIR = "D:/soft_install/dataset/bert-model/zuiyi/chinese_simbert_L-12_H-768_A-12"
BERT_DIR = "D:/soft_install/dataset/bert-model/zuiyi/chinese_simbert_L-6_H-384_A-12"
config_path = BERT_DIR + "/bert_config.json"
checkpoint_path = BERT_DIR + "/bert_model.ckpt"
dict_path = BERT_DIR + "/vocab.txt"
maxlen = 128
# 建立分词器
tokenizer = Tokenizer(dict_path, do_lower_case=True) # 建立分词器
# 建立加载模型
bert = build_transformer_model(
config_path,
checkpoint_path,
with_pool='linear',
application='unilm',
return_keras_model=False,
)
encoder = keras.models.Model(bert.model.inputs, bert.model.outputs[0])
seq2seq = keras.models.Model(bert.model.inputs, bert.model.outputs[1])
# class SynonymsGenerator(AutoRegressiveDecoder):
# """seq2seq解码器
# """
# @AutoRegressiveDecoder.set_rtype('probas')
# def predict(self, inputs, output_ids, states):
# token_ids, segment_ids = inputs
# token_ids = np.concatenate([token_ids, output_ids], 1)
# segment_ids = np.concatenate([segment_ids, np.ones_like(output_ids)], 1)
# # return self.last_token(seq2seq).predict([token_ids, segment_ids])
# return seq2seq.predict([token_ids, segment_ids])[:, -1]
#
# def generate(self, text, n=1, topp=0.95):
# token_ids, segment_ids = tokenizer.encode(text, max_length=maxlen)
# output_ids = self.random_sample([token_ids, segment_ids], n, topp=topp) # 基于随机采样
# return [tokenizer.decode(ids) for ids in output_ids]
class SynonymsGenerator(AutoRegressiveDecoder):
"""seq2seq解码器
"""
@AutoRegressiveDecoder.wraps(default_rtype='probas')
def predict(self, inputs, output_ids, step):
token_ids, segment_ids = inputs
token_ids = np.concatenate([token_ids, output_ids], 1)
segment_ids = np.concatenate([segment_ids, np.ones_like(output_ids)], 1)
return self.last_token(seq2seq).predict([token_ids, segment_ids])
def generate(self, text, n=1, topp=0.95, mask_idxs=[]):
token_ids, segment_ids = tokenizer.encode(text, maxlen=maxlen)
for i in mask_idxs:
token_ids[i] = tokenizer._token_mask_id
output_ids = self.random_sample([token_ids, segment_ids], n, topp=topp) # 基于随机采样
return [tokenizer.decode(ids) for ids in output_ids]
synonyms_generator = SynonymsGenerator(start_id=None, end_id=tokenizer._token_end_id, maxlen=maxlen)
def gen_synonyms(text, n=100, k=20):
""""含义: 产生sent的n个相似句然后返回最相似的k个。
做法用seq2seq生成并用encoder算相似度并排序
"""
r = synonyms_generator.generate(text, n)
r = [i for i in set(r) if i != text]
r = [text] + r
X, S = [], []
for t in r:
x, s = tokenizer.encode(t)
X.append(x)
S.append(s)
X = sequence_padding(X)
S = sequence_padding(S)
Z = encoder.predict([X, S])
Z /= (Z**2).sum(axis=1, keepdims=True)**0.5
argsort = np.dot(Z[1:], -Z[0]).argsort()
return [r[i + 1] for i in argsort[:k]]
if __name__ == '__main__':
datas = [{"text": "平乐县古称昭州隶属于广西壮族自治区桂林市位于广西东北部桂林市东南部东临钟山县南接昭平西北毗邻阳朔北连恭城总面积1919.34平方公里。"},
{"text": "平乐县主要旅游景点有榕津千年古榕、冷水石景苑、仙家温泉、桂江风景区、漓江风景区等,平乐县为漓江分界点,平乐以北称漓江,以南称桂江,是著名的大桂林旅游区之一。"},
{"text": "印岭玲珑,昭水晶莹,环绕我平中。青年的乐园,多士受陶熔。生活自觉自治,学习自发自动。五育并重,手脑并用。迎接新潮流,建设新平中"},
{"text": "桂林山水甲天下, 阳朔山水甲桂林"},
{"text": "三国一统天下"},
{"text": "世间万物皆系于其上"},
{"text": "2020年真是一个糟糕的年代, 进入20年代新冠爆发、经济下行什么的都来了。"},
{"text": "仿佛一切都变得不那么重要了。"},
{"text": "苹果多少钱一斤"}
]
time_start = time.time()
for da in datas:
text = da.get("text", "")
res = gen_synonyms(text)
print(res)
time_total = time.time() - time_start
print("time_total:{}".format(time_total))
print("time_per:{}".format(time_total / len(datas)))
while True:
print("请输入:")
text = input()
res = gen_synonyms(text)
print(res)

View File

@ -0,0 +1,3 @@
tensorflow==1.15.2
bert4keras==0.10.7

View File

@ -7,6 +7,7 @@
- HMM-marko质量较差
- syntax依存句法、句法、语法书简单句还可
- seq2seq深度学习同义句生成效果不理想seq2seq代码大都是 [https://github.com/qhduan/just_another_seq2seq] 的,效果不理想)
- 预训练(UNILM生成、开源模型回译)
# ChatBot
- 检索式ChatBot