Delete keras_bert_embedding.py
This commit is contained in:
parent
9e9ac2a1c7
commit
129b74bed4
@ -1,86 +0,0 @@
|
|||||||
# -*- coding: UTF-8 -*-
|
|
||||||
# !/usr/bin/python
|
|
||||||
# @time :2019/5/8 20:04
|
|
||||||
# @author :Mo
|
|
||||||
# @function :embedding of bert keras
|
|
||||||
|
|
||||||
from ClassificationText.bert.args import gpu_memory_fraction, max_seq_len, layer_indexes
|
|
||||||
from conf.feature_config import config_name, ckpt_name, vocab_file
|
|
||||||
from FeatureProject.bert.layers_keras import NonMaskingLayer
|
|
||||||
from keras_bert import load_trained_model_from_checkpoint
|
|
||||||
import keras.backend.tensorflow_backend as ktf_keras
|
|
||||||
import keras.backend as k_keras
|
|
||||||
from keras.models import Model
|
|
||||||
from keras.layers import Add
|
|
||||||
import tensorflow as tf
|
|
||||||
import os
|
|
||||||
|
|
||||||
import logging as logger
|
|
||||||
# 全局使用,使其可以django、flask、tornado等调用
|
|
||||||
graph = None
|
|
||||||
model = None
|
|
||||||
|
|
||||||
# gpu配置与使用率设置
|
|
||||||
os.environ['CUDA_VISIBLE_DEVICES'] = '0'
|
|
||||||
config = tf.ConfigProto()
|
|
||||||
config.gpu_options.per_process_gpu_memory_fraction = gpu_memory_fraction
|
|
||||||
sess = tf.Session(config=config)
|
|
||||||
ktf_keras.set_session(sess)
|
|
||||||
|
|
||||||
class KerasBertEmbedding():
|
|
||||||
def __init__(self):
|
|
||||||
self.config_path, self.checkpoint_path, self.dict_path, self.max_seq_len = config_name, ckpt_name, vocab_file, max_seq_len
|
|
||||||
|
|
||||||
def bert_encode(self, layer_indexes=[12]):
|
|
||||||
# 全局使用,使其可以django、flask、tornado等调用
|
|
||||||
global graph
|
|
||||||
graph = tf.get_default_graph()
|
|
||||||
global model
|
|
||||||
model = load_trained_model_from_checkpoint(self.config_path, self.checkpoint_path,
|
|
||||||
seq_len=self.max_seq_len)
|
|
||||||
print(model.output)
|
|
||||||
print(len(model.layers))
|
|
||||||
# lay = model.layers
|
|
||||||
#一共104个layer,其中前八层包括token,pos,embed等,
|
|
||||||
# 每8层(MultiHeadAttention,Dropout,Add,LayerNormalization)
|
|
||||||
# 一共12层
|
|
||||||
layer_dict = []
|
|
||||||
layer_0 = 7
|
|
||||||
for i in range(12):
|
|
||||||
layer_0 = layer_0 + 8
|
|
||||||
layer_dict.append(layer_0)
|
|
||||||
# 输出它本身
|
|
||||||
if len(layer_indexes) == 0:
|
|
||||||
encoder_layer = model.output
|
|
||||||
# 分类如果只有一层,就只取最后那一层的weight;取得不正确,就默认取最后一层
|
|
||||||
elif len(layer_indexes) == 1:
|
|
||||||
if layer_indexes[0] in [i+1 for i in range(23)]:
|
|
||||||
encoder_layer = model.get_layer(index=layer_dict[layer_indexes[0]]).output
|
|
||||||
else:
|
|
||||||
encoder_layer = model.get_layer(index=layer_dict[-1]).output
|
|
||||||
# 否则遍历需要取的层,把所有层的weight取出来并拼接起来shape:768*层数
|
|
||||||
else:
|
|
||||||
# layer_indexes must be [1,2,3,......12]
|
|
||||||
# all_layers = [model.get_layer(index=lay).output if lay is not 1 else model.get_layer(index=lay).output[0] for lay in layer_indexes]
|
|
||||||
all_layers = [model.get_layer(index=layer_dict[lay-1]).output if lay in [i+1 for i in range(23)]
|
|
||||||
else model.get_layer(index=layer_dict[-1]).output #如果给出不正确,就默认输出最后一层
|
|
||||||
for lay in layer_indexes]
|
|
||||||
print(layer_indexes)
|
|
||||||
print(all_layers)
|
|
||||||
all_layers_select = []
|
|
||||||
for all_layers_one in all_layers:
|
|
||||||
all_layers_select.append(all_layers_one)
|
|
||||||
encoder_layer = Add()(all_layers_select)
|
|
||||||
print(encoder_layer.shape)
|
|
||||||
print("KerasBertEmbedding:")
|
|
||||||
print(encoder_layer.shape)
|
|
||||||
output_layer = NonMaskingLayer()(encoder_layer)
|
|
||||||
model = Model(model.inputs, output_layer)
|
|
||||||
# model.summary(120)
|
|
||||||
return model.inputs, model.output
|
|
||||||
|
|
||||||
|
|
||||||
if __name__ == "__main__":
|
|
||||||
bert_vector = KerasBertEmbedding()
|
|
||||||
pooled = bert_vector.bert_encode()
|
|
||||||
|
|
Loading…
Reference in New Issue
Block a user