50 lines
2.1 KiB
Markdown
50 lines
2.1 KiB
Markdown
|
# nlp_xiaojiang
|
|||
|
|
|||
|
# Data
|
|||
|
- chinese_vector
|
|||
|
- 截取的部分word2vec训练词向量(自己需要下载全效果才会好)
|
|||
|
- corpus
|
|||
|
- 小黄鸡和gossip问答预料(数据没清洗)
|
|||
|
- sentence_vec_encode_char
|
|||
|
- 1.txt(字向量生成的前100000句向量)
|
|||
|
- sentence_vec_encode_word
|
|||
|
- 1.txt(词向量生成的前100000句向量)
|
|||
|
- tf_idf(chicken_and_gossip.txt生成的tf-idf)
|
|||
|
|
|||
|
# ChatBot
|
|||
|
- 检索式ChatBot
|
|||
|
- 像ES那样直接检索(如使用fuzzywuzzy),只能字面匹配
|
|||
|
- 构造句向量,检索问答库,能够检索有同义词的句子
|
|||
|
- 生成式ChatBot(todo)
|
|||
|
- seq2seq
|
|||
|
- GAN
|
|||
|
|
|||
|
# FeatureProject
|
|||
|
- normalization_util指的是数据归一化
|
|||
|
- 0-1归一化处理
|
|||
|
- 均值归一化
|
|||
|
- sig归一化处理
|
|||
|
- sim feature(这里只有ML,没有bert、emlo等的句向量相似度)
|
|||
|
- distance_text_or_vec:各种计算文本、向量距离等
|
|||
|
- distance_vec_TS_SS:TS_SS计算词向量距离
|
|||
|
- cut_td_idf:将小黄鸡语料和gossip结合
|
|||
|
- sentence_sim_feature:计算两个文本的相似度或者距离,例如qq(问题和问题),或者qa(问题和答案)
|
|||
|
|
|||
|
# run
|
|||
|
- 1.创建tf-idf文件等(运行2需要先跑1): python cut_td_idf.py
|
|||
|
- 2.计算两个句子间的各种相似度,先计算一个预定义的,然后可输入自定义的(先跑1): python sentence_sim_feature.py
|
|||
|
- 3.chatbot_1跑起来(fuzzy检索-没)(独立):python chatbot_fuzzy.py
|
|||
|
- 4.chatbot_2跑起来(句向量检索-词)(独立):python chatbot_sentence_vec_by_word.py
|
|||
|
- 5.chatbot_3跑起来(句向量检索-字)(独立):python chatbot_sentence_vec_by_char.py
|
|||
|
|
|||
|
# requestments.txt
|
|||
|
- python_Levenshtei
|
|||
|
- 调用Levenshtein,我的python是3.6,
|
|||
|
- 打开其源文件https://www.lfd.uci.edu/~gohlke/pythonlibs/
|
|||
|
- 查找python_Levenshtein-0.12.0-cp36-cp36m-win_amd64.whl下载即可
|
|||
|
- pyemd
|
|||
|
- pyhanlp
|
|||
|
- 下好依赖JPype1-0.6.3-cp36-cp36m-win_amd64.whl
|
|||
|
|
|||
|
|