2019-04-09 15:26:07 +08:00
|
|
|
|
# nlp_xiaojiang
|
|
|
|
|
|
|
|
|
|
|
2019-04-09 23:39:43 +08:00
|
|
|
|
# AugmentText
|
|
|
|
|
- 回译(效果比较好)
|
2019-04-17 20:16:57 +08:00
|
|
|
|
- EDA(同义词替换、插入、交换和删除)(效果还行)
|
2019-04-09 23:39:43 +08:00
|
|
|
|
- HMM-marko(质量较差)
|
2019-04-17 20:16:57 +08:00
|
|
|
|
- syntax(依存句法、句法、语法书)(简单句还可)
|
|
|
|
|
- seq2seq(深度学习同义句生成,效果不理想,seq2seq代码大都是 [https://github.com/qhduan/just_another_seq2seq] 的,效果不理想)
|
2021-09-23 11:34:12 +08:00
|
|
|
|
- 预训练(UNILM生成、开源模型回译)
|
2019-04-09 23:39:43 +08:00
|
|
|
|
|
2019-04-09 15:26:07 +08:00
|
|
|
|
# ChatBot
|
|
|
|
|
- 检索式ChatBot
|
|
|
|
|
- 像ES那样直接检索(如使用fuzzywuzzy),只能字面匹配
|
|
|
|
|
- 构造句向量,检索问答库,能够检索有同义词的句子
|
|
|
|
|
- 生成式ChatBot(todo)
|
|
|
|
|
- seq2seq
|
|
|
|
|
- GAN
|
|
|
|
|
|
2019-05-12 10:26:24 +08:00
|
|
|
|
# ClassificationText
|
2019-05-20 19:53:59 +08:00
|
|
|
|
- bert+bi-lstm(keras) approach 0.78~0.79% acc of weBank Intelligent Customer Service Question Matching Competition
|
|
|
|
|
- bert + text-cnn(keras) approach 0.78~0.79% acc of weBank Intelligent Customer Service Question Matching Competition
|
|
|
|
|
- bert + r-cnn(keras) approach 0.78~0.79% acc of weBank Intelligent Customer Service Question Matching Competition
|
|
|
|
|
- bert + avt-cnn(keras) approach 0.78~0.79% acc of weBank Intelligent Customer Service Question Matching Competition
|
2019-05-12 10:26:24 +08:00
|
|
|
|
|
2019-07-01 22:09:19 +08:00
|
|
|
|
# Ner
|
|
|
|
|
- bert命名实体提取(bert12层embedding + bilstm + crf)
|
|
|
|
|
- args.py(配置一些参数)
|
|
|
|
|
- keras_bert_embedding.py(bert embedding)
|
|
|
|
|
- keras_bert_layer.py(layer层, 主要有CRF和NonMaskingLayer)
|
|
|
|
|
- keras_bert_ner_bi_lstm.py(主函数, 定义模型、数据预处理和训练预测等)
|
|
|
|
|
- layer_crf_bojone.py(CRF层, 未使用)
|
2019-05-12 10:26:24 +08:00
|
|
|
|
|
2019-04-09 15:26:07 +08:00
|
|
|
|
# FeatureProject
|
2019-05-10 10:20:55 +08:00
|
|
|
|
- bert句向量、文本相似度
|
|
|
|
|
- bert/extract_keras_bert_feature.py:提取bert句向量特征
|
2019-08-28 01:53:54 +08:00
|
|
|
|
- bert/tet_bert_keras_sim.py:测试xlnet句向量cosin相似度
|
2019-08-28 01:51:17 +08:00
|
|
|
|
- xlnet句向量、文本相似度
|
|
|
|
|
- xlnet/extract_keras_xlnet_feature.py:提取bert句向量特征
|
|
|
|
|
- xlnet/tet_xlnet_keras_sim.py:测试bert句向量cosin相似度
|
2019-04-09 15:26:07 +08:00
|
|
|
|
- normalization_util指的是数据归一化
|
|
|
|
|
- 0-1归一化处理
|
|
|
|
|
- 均值归一化
|
|
|
|
|
- sig归一化处理
|
2019-05-10 10:20:55 +08:00
|
|
|
|
- sim feature(ML)
|
2019-04-09 15:26:07 +08:00
|
|
|
|
- distance_text_or_vec:各种计算文本、向量距离等
|
|
|
|
|
- distance_vec_TS_SS:TS_SS计算词向量距离
|
|
|
|
|
- cut_td_idf:将小黄鸡语料和gossip结合
|
|
|
|
|
- sentence_sim_feature:计算两个文本的相似度或者距离,例如qq(问题和问题),或者qa(问题和答案)
|
|
|
|
|
|
2019-04-09 23:39:43 +08:00
|
|
|
|
# run(可以在win10下,pycharm下运行)
|
2019-04-13 00:17:11 +08:00
|
|
|
|
- 1.创建tf-idf文件等(运行2需要先跑1):
|
|
|
|
|
```
|
|
|
|
|
python cut_td_idf.py
|
|
|
|
|
```
|
|
|
|
|
- 2.计算两个句子间的各种相似度,先计算一个预定义的,然后可输入自定义的(先跑1):
|
|
|
|
|
```
|
|
|
|
|
python sentence_sim_feature.py
|
|
|
|
|
```
|
|
|
|
|
- 3.chatbot_1跑起来(fuzzy检索-没)(独立):
|
|
|
|
|
```
|
|
|
|
|
python chatbot_fuzzy.py
|
|
|
|
|
```
|
|
|
|
|
- 4.chatbot_2跑起来(句向量检索-词)(独立):
|
|
|
|
|
```
|
|
|
|
|
python chatbot_sentence_vec_by_word.py
|
|
|
|
|
```
|
|
|
|
|
- 5.chatbot_3跑起来(句向量检索-字)(独立):
|
|
|
|
|
```
|
|
|
|
|
python chatbot_sentence_vec_by_char.py
|
|
|
|
|
```
|
2019-04-09 23:39:43 +08:00
|
|
|
|
- 6.数据增强(eda): python enhance_eda.py
|
|
|
|
|
- 7.数据增强(marko): python enhance_marko.py
|
|
|
|
|
- 8.数据增强(translate_account): python translate_tencent_secret.py
|
|
|
|
|
- 9.数据增强(translate_tools): python translate_translate.py
|
|
|
|
|
- 10.数据增强(translate_web): python translate_google.py
|
2019-04-17 20:20:17 +08:00
|
|
|
|
- 11.数据增强(augment_seq2seq): 先跑 python extract_char_webank.py生成数据,
|
|
|
|
|
再跑 python train_char_anti.py
|
|
|
|
|
然后跑 python predict_char_anti.py
|
2019-05-10 10:16:19 +08:00
|
|
|
|
- 12.特征计算(bert)(提取特征、计算相似度):
|
2019-05-10 10:14:36 +08:00
|
|
|
|
```
|
|
|
|
|
run extract_keras_bert_feature.py
|
|
|
|
|
run tet_bert_keras_sim.py
|
|
|
|
|
```
|
|
|
|
|
|
2019-04-09 23:39:43 +08:00
|
|
|
|
# Data
|
2019-05-10 10:08:18 +08:00
|
|
|
|
- chinese_L-12_H-768_A-12(谷歌预训练好的模型)
|
|
|
|
|
github项目中只是上传部分数据,需要的前往链接: https://pan.baidu.com/s/1I3vydhmFEQ9nuPG2fDou8Q 提取码: rket
|
|
|
|
|
解压后就可以啦
|
2019-08-28 01:51:17 +08:00
|
|
|
|
- chinese_xlnet_mid_L-24_H-768_A-12(哈工大训练的中文xlnet, mid, 24层, wiki语料+通用语料)
|
|
|
|
|
- 下载地址[https://github.com/ymcui/Chinese-PreTrained-XLNet](https://github.com/ymcui/Chinese-PreTrained-XLNet)
|
2019-04-09 23:39:43 +08:00
|
|
|
|
- chinese_vector
|
2019-05-07 07:42:42 +08:00
|
|
|
|
github项目中只是上传部分数据,需要的前往链接: https://pan.baidu.com/s/1I3vydhmFEQ9nuPG2fDou8Q 提取码: rket
|
2019-04-09 23:39:43 +08:00
|
|
|
|
- 截取的部分word2vec训练词向量(自己需要下载全效果才会好)
|
2020-05-06 20:11:27 +08:00
|
|
|
|
- w2v_model_wiki_char.vec、w2v_model_wiki_word.vec都只有部分,词向量w2v_model_wiki_word.vec可以用这个下载地址的替换[https://pan.baidu.com/s/14JP1gD7hcmsWdSpTvA3vKA](https://pan.baidu.com/s/14JP1gD7hcmsWdSpTvA3vKA)
|
|
|
|
|
|
2019-04-09 23:39:43 +08:00
|
|
|
|
- corpus
|
2019-05-06 22:13:51 +08:00
|
|
|
|
github项目中只是上传部分数据,需要的前往链接: https://pan.baidu.com/s/1I3vydhmFEQ9nuPG2fDou8Q 提取码: rket
|
2019-07-01 22:09:19 +08:00
|
|
|
|
- ner(train、dev、test----人民日报语料)
|
2019-05-12 10:26:24 +08:00
|
|
|
|
- webank(train、dev、test)
|
2019-05-06 22:13:51 +08:00
|
|
|
|
- 小黄鸡和gossip问答预料(数据没清洗),chicken_and_gossip.txt
|
|
|
|
|
- 微众银行和支付宝文本相似度竞赛数据, sim_webank.csv
|
2019-04-09 23:39:43 +08:00
|
|
|
|
- sentence_vec_encode_char
|
|
|
|
|
- 1.txt(字向量生成的前100000句向量)
|
|
|
|
|
- sentence_vec_encode_word
|
|
|
|
|
- 1.txt(词向量生成的前100000句向量)
|
|
|
|
|
- tf_idf(chicken_and_gossip.txt生成的tf-idf)
|
|
|
|
|
|
2019-04-09 15:26:07 +08:00
|
|
|
|
# requestments.txt
|
|
|
|
|
- python_Levenshtei
|
|
|
|
|
- 调用Levenshtein,我的python是3.6,
|
2019-04-13 00:19:11 +08:00
|
|
|
|
- 打开其源文件: https://www.lfd.uci.edu/~gohlke/pythonlibs/
|
2019-04-09 15:26:07 +08:00
|
|
|
|
- 查找python_Levenshtein-0.12.0-cp36-cp36m-win_amd64.whl下载即可
|
|
|
|
|
- pyemd
|
|
|
|
|
- pyhanlp
|
|
|
|
|
- 下好依赖JPype1-0.6.3-cp36-cp36m-win_amd64.whl
|
2019-04-12 23:54:58 +08:00
|
|
|
|
|
|
|
|
|
# 参考/感谢
|
2019-04-13 00:17:11 +08:00
|
|
|
|
* eda_chinese:[https://github.com/zhanlaoban/eda_nlp_for_Chinese](https://github.com/zhanlaoban/eda_nlp_for_Chinese)
|
|
|
|
|
* 主谓宾提取器:[https://github.com/hankcs/MainPartExtractor](https://github.com/hankcs/MainPartExtractor)
|
|
|
|
|
* HMM生成句子:[https://github.com/takeToDreamLand/SentenceGenerate_byMarkov](https://github.com/takeToDreamLand/SentenceGenerate_byMarkov)
|
|
|
|
|
* 同义词等:[https://github.com/fighting41love/funNLP/tree/master/data/](https://github.com/fighting41love/funNLP/tree/master/data/)
|
|
|
|
|
* 小牛翻译:[http://www.niutrans.com/index.html](http://www.niutrans.com/index.html)
|
2019-04-12 23:54:58 +08:00
|
|
|
|
|
|
|
|
|
# 其他资料
|
2019-05-12 10:27:48 +08:00
|
|
|
|
* bert(keras):[https://github.com/CyberZHG/keras-bert](https://github.com/CyberZHG/keras-bert)
|
2019-04-13 00:17:11 +08:00
|
|
|
|
* NLP数据增强汇总:[https://github.com/quincyliang/nlp-data-augmentation](https://github.com/quincyliang/nlp-data-augmentation)
|
|
|
|
|
* 知乎NLP数据增强话题:[https://www.zhihu.com/question/305256736/answer/550873100](https://www.zhihu.com/question/305256736/answer/550873100)
|
|
|
|
|
* chatbot_seq2seq_seqGan(比较好用):[https://github.com/qhduan/just_another_seq2seq](https://github.com/qhduan/just_another_seq2seq)
|
|
|
|
|
* 自己动手做聊天机器人教程: [https://github.com/warmheartli/ChatBotCourse](https://github.com/warmheartli/ChatBotCourse)
|
2019-04-12 23:54:58 +08:00
|
|
|
|
|