172 lines
5.9 KiB
Python
172 lines
5.9 KiB
Python
|
# coding=utf-8
|
||
|
# Copyright 2018 The Google AI Language Team Authors.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
"""Functions and classes related to optimization (weight updates)."""
|
||
|
|
||
|
from __future__ import absolute_import
|
||
|
from __future__ import division
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import re
|
||
|
import tensorflow as tf
|
||
|
|
||
|
|
||
|
def create_optimizer(loss, init_lr, num_train_steps, num_warmup_steps, use_tpu):
|
||
|
"""Creates an optimizer training op."""
|
||
|
global_step = tf.train.get_or_create_global_step()
|
||
|
|
||
|
learning_rate = tf.constant(value=init_lr, shape=[], dtype=tf.float32)
|
||
|
|
||
|
# Implements linear decay of the learning rate.
|
||
|
learning_rate = tf.train.polynomial_decay(
|
||
|
learning_rate,
|
||
|
global_step,
|
||
|
num_train_steps,
|
||
|
end_learning_rate=0.0,
|
||
|
power=1.0,
|
||
|
cycle=False)
|
||
|
|
||
|
# Implements linear warmup. I.e., if global_step < num_warmup_steps, the
|
||
|
# learning rate will be `global_step/num_warmup_steps * init_lr`.
|
||
|
if num_warmup_steps:
|
||
|
global_steps_int = tf.cast(global_step, tf.int32)
|
||
|
warmup_steps_int = tf.constant(num_warmup_steps, dtype=tf.int32)
|
||
|
|
||
|
global_steps_float = tf.cast(global_steps_int, tf.float32)
|
||
|
warmup_steps_float = tf.cast(warmup_steps_int, tf.float32)
|
||
|
|
||
|
warmup_percent_done = global_steps_float / warmup_steps_float
|
||
|
warmup_learning_rate = init_lr * warmup_percent_done
|
||
|
|
||
|
is_warmup = tf.cast(global_steps_int < warmup_steps_int, tf.float32)
|
||
|
learning_rate = (
|
||
|
(1.0 - is_warmup) * learning_rate + is_warmup * warmup_learning_rate)
|
||
|
|
||
|
# It is recommended that you use this optimizer for fine tuning, since this
|
||
|
# is how the model was trained (note that the Adam m/v variables are NOT
|
||
|
# loaded from init_checkpoint.)
|
||
|
optimizer = AdamWeightDecayOptimizer(
|
||
|
learning_rate=learning_rate,
|
||
|
weight_decay_rate=0.01,
|
||
|
beta_1=0.9,
|
||
|
beta_2=0.999,
|
||
|
epsilon=1e-6,
|
||
|
exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"])
|
||
|
|
||
|
if use_tpu:
|
||
|
optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
|
||
|
|
||
|
tvars = tf.trainable_variables()
|
||
|
grads = tf.gradients(loss, tvars)
|
||
|
|
||
|
# This is how the model was pre-trained.
|
||
|
(grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0)
|
||
|
|
||
|
train_op = optimizer.apply_gradients(
|
||
|
zip(grads, tvars), global_step=global_step)
|
||
|
|
||
|
new_global_step = global_step + 1
|
||
|
train_op = tf.group(train_op, [global_step.assign(new_global_step)])
|
||
|
return train_op
|
||
|
|
||
|
|
||
|
class AdamWeightDecayOptimizer(tf.train.Optimizer):
|
||
|
"""A basic Adam optimizer that includes "correct" L2 weight decay."""
|
||
|
|
||
|
def __init__(self,
|
||
|
learning_rate,
|
||
|
weight_decay_rate=0.0,
|
||
|
beta_1=0.9,
|
||
|
beta_2=0.999,
|
||
|
epsilon=1e-6,
|
||
|
exclude_from_weight_decay=None,
|
||
|
name="AdamWeightDecayOptimizer"):
|
||
|
"""Constructs a AdamWeightDecayOptimizer."""
|
||
|
super(AdamWeightDecayOptimizer, self).__init__(False, name)
|
||
|
|
||
|
self.learning_rate = learning_rate
|
||
|
self.weight_decay_rate = weight_decay_rate
|
||
|
self.beta_1 = beta_1
|
||
|
self.beta_2 = beta_2
|
||
|
self.epsilon = epsilon
|
||
|
self.exclude_from_weight_decay = exclude_from_weight_decay
|
||
|
|
||
|
def apply_gradients(self, grads_and_vars, global_step=None, name=None):
|
||
|
"""See base class."""
|
||
|
assignments = []
|
||
|
for (grad, param) in grads_and_vars:
|
||
|
if grad is None or param is None:
|
||
|
continue
|
||
|
|
||
|
param_name = self._get_variable_name(param.name)
|
||
|
|
||
|
m = tf.get_variable(
|
||
|
name=param_name + "/adam_m",
|
||
|
shape=param.shape.as_list(),
|
||
|
dtype=tf.float32,
|
||
|
trainable=False,
|
||
|
initializer=tf.zeros_initializer())
|
||
|
v = tf.get_variable(
|
||
|
name=param_name + "/adam_v",
|
||
|
shape=param.shape.as_list(),
|
||
|
dtype=tf.float32,
|
||
|
trainable=False,
|
||
|
initializer=tf.zeros_initializer())
|
||
|
|
||
|
# Standard Adam update.
|
||
|
next_m = (
|
||
|
tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad))
|
||
|
next_v = (
|
||
|
tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2,
|
||
|
tf.square(grad)))
|
||
|
|
||
|
update = next_m / (tf.sqrt(next_v) + self.epsilon)
|
||
|
|
||
|
# Just adding the square of the weights to the loss function is *not*
|
||
|
# the correct way of using L2 regularization/weight decay with Adam,
|
||
|
# since that will interact with the m and v parameters in strange ways.
|
||
|
#
|
||
|
# Instead we want ot decay the weights in a manner that doesn't interact
|
||
|
# with the m/v parameters. This is equivalent to adding the square
|
||
|
# of the weights to the loss with plain (non-momentum) SGD.
|
||
|
if self._do_use_weight_decay(param_name):
|
||
|
update += self.weight_decay_rate * param
|
||
|
|
||
|
update_with_lr = self.learning_rate * update
|
||
|
|
||
|
next_param = param - update_with_lr
|
||
|
|
||
|
assignments.extend(
|
||
|
[param.assign(next_param),
|
||
|
m.assign(next_m),
|
||
|
v.assign(next_v)])
|
||
|
return tf.group(*assignments, name=name)
|
||
|
|
||
|
def _do_use_weight_decay(self, param_name):
|
||
|
"""Whether to use L2 weight decay for `param_name`."""
|
||
|
if not self.weight_decay_rate:
|
||
|
return False
|
||
|
if self.exclude_from_weight_decay:
|
||
|
for r in self.exclude_from_weight_decay:
|
||
|
if re.search(r, param_name) is not None:
|
||
|
return False
|
||
|
return True
|
||
|
|
||
|
def _get_variable_name(self, param_name):
|
||
|
"""Get the variable name from the tensor name."""
|
||
|
m = re.match("^(.*):\\d+$", param_name)
|
||
|
if m is not None:
|
||
|
param_name = m.group(1)
|
||
|
return param_name
|