2019-01-29 18:31:51 +08:00
|
|
|
|
import os
|
|
|
|
|
from queue import Queue
|
|
|
|
|
from threading import Thread
|
|
|
|
|
|
|
|
|
|
import pandas as pd
|
|
|
|
|
import tensorflow as tf
|
|
|
|
|
import collections
|
|
|
|
|
import args
|
|
|
|
|
import tokenization
|
|
|
|
|
import modeling
|
|
|
|
|
import optimization
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
# os.environ['CUDA_VISIBLE_DEVICES'] = '1'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class InputExample(object):
|
|
|
|
|
"""A single training/test example for simple sequence classification."""
|
|
|
|
|
|
|
|
|
|
def __init__(self, guid, text_a, text_b=None, label=None):
|
|
|
|
|
"""Constructs a InputExample.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
guid: Unique id for the example.
|
|
|
|
|
text_a: string. The untokenized text of the first sequence. For single
|
|
|
|
|
sequence tasks, only this sequence must be specified.
|
|
|
|
|
text_b: (Optional) string. The untokenized text of the second sequence.
|
|
|
|
|
Only must be specified for sequence pair tasks.
|
|
|
|
|
label: (Optional) string. The label of the example. This should be
|
|
|
|
|
specified for train and dev examples, but not for test examples.
|
|
|
|
|
"""
|
|
|
|
|
self.guid = guid
|
|
|
|
|
self.text_a = text_a
|
|
|
|
|
self.text_b = text_b
|
|
|
|
|
self.label = label
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class InputFeatures(object):
|
|
|
|
|
"""A single set of features of data."""
|
|
|
|
|
|
|
|
|
|
def __init__(self, input_ids, input_mask, segment_ids, label_id):
|
|
|
|
|
self.input_ids = input_ids
|
|
|
|
|
self.input_mask = input_mask
|
|
|
|
|
self.segment_ids = segment_ids
|
|
|
|
|
self.label_id = label_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class DataProcessor(object):
|
|
|
|
|
"""Base class for data converters for sequence classification data sets."""
|
|
|
|
|
|
|
|
|
|
def get_train_examples(self, data_dir):
|
|
|
|
|
"""Gets a collection of `InputExample`s for the train set."""
|
|
|
|
|
raise NotImplementedError()
|
|
|
|
|
|
|
|
|
|
def get_dev_examples(self, data_dir):
|
|
|
|
|
"""Gets a collection of `InputExample`s for the dev set."""
|
|
|
|
|
raise NotImplementedError()
|
|
|
|
|
|
|
|
|
|
def get_test_examples(self, data_dir):
|
|
|
|
|
"""Gets a collection of `InputExample`s for prediction."""
|
|
|
|
|
raise NotImplementedError()
|
|
|
|
|
|
|
|
|
|
def get_labels(self):
|
|
|
|
|
"""Gets the list of labels for this data set."""
|
|
|
|
|
raise NotImplementedError()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class SimProcessor(DataProcessor):
|
|
|
|
|
def get_train_examples(self, data_dir):
|
|
|
|
|
file_path = os.path.join(data_dir, 'train.csv')
|
|
|
|
|
train_df = pd.read_csv(file_path, encoding='utf-8')
|
|
|
|
|
train_data = []
|
|
|
|
|
for index, train in enumerate(train_df.values):
|
|
|
|
|
guid = 'train-%d' % index
|
|
|
|
|
text_a = tokenization.convert_to_unicode(str(train[0]))
|
|
|
|
|
text_b = tokenization.convert_to_unicode(str(train[1]))
|
|
|
|
|
label = str(train[2])
|
|
|
|
|
train_data.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
|
|
|
|
return train_data
|
|
|
|
|
|
|
|
|
|
def get_dev_examples(self, data_dir):
|
2019-01-29 18:50:08 +08:00
|
|
|
|
file_path = os.path.join(data_dir, 'dev.csv')
|
2019-01-29 18:31:51 +08:00
|
|
|
|
dev_df = pd.read_csv(file_path, encoding='utf-8')
|
|
|
|
|
dev_data = []
|
|
|
|
|
for index, dev in enumerate(dev_df.values):
|
|
|
|
|
guid = 'test-%d' % index
|
|
|
|
|
text_a = tokenization.convert_to_unicode(str(dev[0]))
|
|
|
|
|
text_b = tokenization.convert_to_unicode(str(dev[1]))
|
|
|
|
|
label = str(dev[2])
|
|
|
|
|
dev_data.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
|
|
|
|
return dev_data
|
|
|
|
|
|
|
|
|
|
def get_test_examples(self, data_dir):
|
|
|
|
|
file_path = os.path.join(data_dir, 'test.csv')
|
|
|
|
|
test_df = pd.read_csv(file_path, encoding='utf-8')
|
|
|
|
|
test_data = []
|
|
|
|
|
for index, test in enumerate(test_df.values):
|
|
|
|
|
guid = 'test-%d' % index
|
|
|
|
|
text_a = tokenization.convert_to_unicode(str(test[0]))
|
|
|
|
|
text_b = tokenization.convert_to_unicode(str(test[1]))
|
|
|
|
|
label = str(test[2])
|
|
|
|
|
test_data.append(InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label))
|
|
|
|
|
return test_data
|
|
|
|
|
|
|
|
|
|
def get_sentence_examples(self, questions):
|
|
|
|
|
for index, data in enumerate(questions):
|
|
|
|
|
guid = 'test-%d' % index
|
|
|
|
|
text_a = tokenization.convert_to_unicode(str(data[0]))
|
|
|
|
|
text_b = tokenization.convert_to_unicode(str(data[1]))
|
|
|
|
|
label = str(0)
|
|
|
|
|
yield InputExample(guid=guid, text_a=text_a, text_b=text_b, label=label)
|
|
|
|
|
|
|
|
|
|
def get_labels(self):
|
|
|
|
|
return ['0', '1']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class BertSim:
|
|
|
|
|
|
|
|
|
|
def __init__(self, batch_size=args.batch_size):
|
|
|
|
|
self.mode = None
|
|
|
|
|
self.max_seq_length = args.max_seq_len
|
|
|
|
|
self.tokenizer = tokenization.FullTokenizer(vocab_file=args.vocab_file, do_lower_case=True)
|
|
|
|
|
self.batch_size = batch_size
|
|
|
|
|
self.estimator = None
|
|
|
|
|
self.processor = SimProcessor()
|
|
|
|
|
tf.logging.set_verbosity(tf.logging.INFO)
|
|
|
|
|
|
|
|
|
|
def set_mode(self, mode):
|
|
|
|
|
self.mode = mode
|
|
|
|
|
self.estimator = self.get_estimator()
|
|
|
|
|
if mode == tf.estimator.ModeKeys.TRAIN:
|
|
|
|
|
self.input_queue = Queue(maxsize=1)
|
|
|
|
|
self.output_queue = Queue(maxsize=1)
|
|
|
|
|
self.predict_thread = Thread(target=self.predict_from_queue, daemon=True)
|
|
|
|
|
self.predict_thread.start()
|
|
|
|
|
|
|
|
|
|
def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
|
|
|
|
|
labels, num_labels, use_one_hot_embeddings):
|
|
|
|
|
"""Creates a classification model."""
|
|
|
|
|
model = modeling.BertModel(
|
|
|
|
|
config=bert_config,
|
|
|
|
|
is_training=is_training,
|
|
|
|
|
input_ids=input_ids,
|
|
|
|
|
input_mask=input_mask,
|
|
|
|
|
token_type_ids=segment_ids,
|
|
|
|
|
use_one_hot_embeddings=use_one_hot_embeddings)
|
|
|
|
|
|
|
|
|
|
# In the demo, we are doing a simple classification task on the entire
|
|
|
|
|
# segment.
|
|
|
|
|
#
|
|
|
|
|
# If you want to use the token-level output, use model.get_sequence_output()
|
|
|
|
|
# instead.
|
|
|
|
|
output_layer = model.get_pooled_output()
|
|
|
|
|
|
|
|
|
|
hidden_size = output_layer.shape[-1].value
|
|
|
|
|
|
|
|
|
|
output_weights = tf.get_variable(
|
|
|
|
|
"output_weights", [num_labels, hidden_size],
|
|
|
|
|
initializer=tf.truncated_normal_initializer(stddev=0.02))
|
|
|
|
|
|
|
|
|
|
output_bias = tf.get_variable(
|
|
|
|
|
"output_bias", [num_labels], initializer=tf.zeros_initializer())
|
|
|
|
|
|
|
|
|
|
with tf.variable_scope("loss"):
|
|
|
|
|
if is_training:
|
|
|
|
|
# I.e., 0.1 dropout
|
|
|
|
|
output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
|
|
|
|
|
|
|
|
|
|
logits = tf.matmul(output_layer, output_weights, transpose_b=True)
|
|
|
|
|
logits = tf.nn.bias_add(logits, output_bias)
|
|
|
|
|
probabilities = tf.nn.softmax(logits, axis=-1)
|
|
|
|
|
log_probs = tf.nn.log_softmax(logits, axis=-1)
|
|
|
|
|
|
|
|
|
|
one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
|
|
|
|
|
|
|
|
|
|
per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
|
|
|
|
|
loss = tf.reduce_mean(per_example_loss)
|
|
|
|
|
|
|
|
|
|
return (loss, per_example_loss, logits, probabilities)
|
|
|
|
|
|
|
|
|
|
def model_fn_builder(self, bert_config, num_labels, init_checkpoint, learning_rate,
|
|
|
|
|
num_train_steps, num_warmup_steps,
|
|
|
|
|
use_one_hot_embeddings):
|
|
|
|
|
"""Returns `model_fn` closure for TPUEstimator."""
|
|
|
|
|
|
|
|
|
|
def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
|
|
|
|
|
from tensorflow.python.estimator.model_fn import EstimatorSpec
|
|
|
|
|
|
|
|
|
|
tf.logging.info("*** Features ***")
|
|
|
|
|
for name in sorted(features.keys()):
|
|
|
|
|
tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
|
|
|
|
|
|
|
|
|
|
input_ids = features["input_ids"]
|
|
|
|
|
input_mask = features["input_mask"]
|
|
|
|
|
segment_ids = features["segment_ids"]
|
|
|
|
|
label_ids = features["label_ids"]
|
|
|
|
|
|
|
|
|
|
is_training = (mode == tf.estimator.ModeKeys.TRAIN)
|
|
|
|
|
|
|
|
|
|
(total_loss, per_example_loss, logits, probabilities) = BertSim.create_model(
|
|
|
|
|
bert_config, is_training, input_ids, input_mask, segment_ids, label_ids,
|
|
|
|
|
num_labels, use_one_hot_embeddings)
|
|
|
|
|
|
|
|
|
|
tvars = tf.trainable_variables()
|
|
|
|
|
initialized_variable_names = {}
|
|
|
|
|
|
|
|
|
|
if init_checkpoint:
|
|
|
|
|
(assignment_map, initialized_variable_names) \
|
|
|
|
|
= modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
|
|
|
|
|
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
|
|
|
|
|
|
|
|
|
|
tf.logging.info("**** Trainable Variables ****")
|
|
|
|
|
for var in tvars:
|
|
|
|
|
init_string = ""
|
|
|
|
|
if var.name in initialized_variable_names:
|
|
|
|
|
init_string = ", *INIT_FROM_CKPT*"
|
|
|
|
|
tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
|
|
|
|
|
init_string)
|
|
|
|
|
|
|
|
|
|
if mode == tf.estimator.ModeKeys.TRAIN:
|
|
|
|
|
|
|
|
|
|
train_op = optimization.create_optimizer(
|
|
|
|
|
total_loss, learning_rate, num_train_steps, num_warmup_steps, False)
|
|
|
|
|
|
|
|
|
|
output_spec = EstimatorSpec(
|
|
|
|
|
mode=mode,
|
|
|
|
|
loss=total_loss,
|
|
|
|
|
train_op=train_op)
|
|
|
|
|
elif mode == tf.estimator.ModeKeys.EVAL:
|
|
|
|
|
|
|
|
|
|
def metric_fn(per_example_loss, label_ids, logits):
|
|
|
|
|
predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
|
|
|
|
|
accuracy = tf.metrics.accuracy(label_ids, predictions)
|
|
|
|
|
auc = tf.metrics.auc(label_ids, predictions)
|
|
|
|
|
loss = tf.metrics.mean(per_example_loss)
|
|
|
|
|
return {
|
|
|
|
|
"eval_accuracy": accuracy,
|
|
|
|
|
"eval_auc": auc,
|
|
|
|
|
"eval_loss": loss,
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
eval_metrics = metric_fn(per_example_loss, label_ids, logits)
|
|
|
|
|
output_spec = EstimatorSpec(
|
|
|
|
|
mode=mode,
|
|
|
|
|
loss=total_loss,
|
|
|
|
|
eval_metric_ops=eval_metrics)
|
|
|
|
|
else:
|
|
|
|
|
output_spec = EstimatorSpec(mode=mode, predictions=probabilities)
|
|
|
|
|
|
|
|
|
|
return output_spec
|
|
|
|
|
|
|
|
|
|
return model_fn
|
|
|
|
|
|
|
|
|
|
def get_estimator(self):
|
|
|
|
|
|
|
|
|
|
from tensorflow.python.estimator.estimator import Estimator
|
|
|
|
|
from tensorflow.python.estimator.run_config import RunConfig
|
|
|
|
|
|
|
|
|
|
bert_config = modeling.BertConfig.from_json_file(args.config_name)
|
|
|
|
|
label_list = self.processor.get_labels()
|
|
|
|
|
train_examples = self.processor.get_train_examples(args.data_dir)
|
|
|
|
|
num_train_steps = int(
|
|
|
|
|
len(train_examples) / self.batch_size * args.num_train_epochs)
|
|
|
|
|
num_warmup_steps = int(num_train_steps * 0.1)
|
|
|
|
|
|
|
|
|
|
if self.mode == tf.estimator.ModeKeys.TRAIN:
|
|
|
|
|
init_checkpoint = args.ckpt_name
|
|
|
|
|
else:
|
|
|
|
|
init_checkpoint = args.output_dir
|
|
|
|
|
|
|
|
|
|
model_fn = self.model_fn_builder(
|
|
|
|
|
bert_config=bert_config,
|
|
|
|
|
num_labels=len(label_list),
|
|
|
|
|
init_checkpoint=init_checkpoint,
|
|
|
|
|
learning_rate=args.learning_rate,
|
|
|
|
|
num_train_steps=num_train_steps,
|
|
|
|
|
num_warmup_steps=num_warmup_steps,
|
|
|
|
|
use_one_hot_embeddings=False)
|
|
|
|
|
|
|
|
|
|
config = tf.ConfigProto()
|
|
|
|
|
config.gpu_options.allow_growth = True
|
|
|
|
|
config.gpu_options.per_process_gpu_memory_fraction = args.gpu_memory_fraction
|
|
|
|
|
config.log_device_placement = False
|
|
|
|
|
|
|
|
|
|
return Estimator(model_fn=model_fn, config=RunConfig(session_config=config), model_dir=args.output_dir,
|
|
|
|
|
params={'batch_size': self.batch_size})
|
|
|
|
|
|
|
|
|
|
def predict_from_queue(self):
|
|
|
|
|
for i in self.estimator.predict(input_fn=self.queue_predict_input_fn, yield_single_examples=False):
|
|
|
|
|
self.output_queue.put(i)
|
|
|
|
|
|
|
|
|
|
def queue_predict_input_fn(self):
|
|
|
|
|
return (tf.data.Dataset.from_generator(
|
|
|
|
|
self.generate_from_queue,
|
|
|
|
|
output_types={
|
|
|
|
|
'input_ids': tf.int32,
|
|
|
|
|
'input_mask': tf.int32,
|
|
|
|
|
'segment_ids': tf.int32,
|
|
|
|
|
'label_ids': tf.int32},
|
|
|
|
|
output_shapes={
|
|
|
|
|
'input_ids': (None, self.max_seq_length),
|
|
|
|
|
'input_mask': (None, self.max_seq_length),
|
|
|
|
|
'segment_ids': (None, self.max_seq_length),
|
|
|
|
|
'label_ids': (1,)}).prefetch(10))
|
|
|
|
|
|
|
|
|
|
def convert_examples_to_features(self, examples, label_list, max_seq_length, tokenizer):
|
|
|
|
|
"""Convert a set of `InputExample`s to a list of `InputFeatures`."""
|
|
|
|
|
|
|
|
|
|
for (ex_index, example) in enumerate(examples):
|
|
|
|
|
label_map = {}
|
|
|
|
|
for (i, label) in enumerate(label_list):
|
|
|
|
|
label_map[label] = i
|
|
|
|
|
|
|
|
|
|
tokens_a = tokenizer.tokenize(example.text_a)
|
|
|
|
|
tokens_b = None
|
|
|
|
|
if example.text_b:
|
|
|
|
|
tokens_b = tokenizer.tokenize(example.text_b)
|
|
|
|
|
|
|
|
|
|
if tokens_b:
|
|
|
|
|
# Modifies `tokens_a` and `tokens_b` in place so that the total
|
|
|
|
|
# length is less than the specified length.
|
|
|
|
|
# Account for [CLS], [SEP], [SEP] with "- 3"
|
|
|
|
|
self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
|
|
|
|
|
else:
|
|
|
|
|
# Account for [CLS] and [SEP] with "- 2"
|
|
|
|
|
if len(tokens_a) > max_seq_length - 2:
|
|
|
|
|
tokens_a = tokens_a[0:(max_seq_length - 2)]
|
|
|
|
|
|
|
|
|
|
# The convention in BERT is:
|
|
|
|
|
# (a) For sequence pairs:
|
|
|
|
|
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
|
|
|
|
|
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
|
|
|
|
|
# (b) For single sequences:
|
|
|
|
|
# tokens: [CLS] the dog is hairy . [SEP]
|
|
|
|
|
# type_ids: 0 0 0 0 0 0 0
|
|
|
|
|
#
|
|
|
|
|
# Where "type_ids" are used to indicate whether this is the first
|
|
|
|
|
# sequence or the second sequence. The embedding vectors for `type=0` and
|
|
|
|
|
# `type=1` were learned during pre-training and are added to the wordpiece
|
|
|
|
|
# embedding vector (and position vector). This is not *strictly* necessary
|
|
|
|
|
# since the [SEP] token unambiguously separates the sequences, but it makes
|
|
|
|
|
# it easier for the model to learn the concept of sequences.
|
|
|
|
|
#
|
|
|
|
|
# For classification tasks, the first vector (corresponding to [CLS]) is
|
|
|
|
|
# used as as the "sentence vector". Note that this only makes sense because
|
|
|
|
|
# the entire model is fine-tuned.
|
|
|
|
|
tokens = []
|
|
|
|
|
segment_ids = []
|
|
|
|
|
tokens.append("[CLS]")
|
|
|
|
|
segment_ids.append(0)
|
|
|
|
|
for token in tokens_a:
|
|
|
|
|
tokens.append(token)
|
|
|
|
|
segment_ids.append(0)
|
|
|
|
|
tokens.append("[SEP]")
|
|
|
|
|
segment_ids.append(0)
|
|
|
|
|
|
|
|
|
|
if tokens_b:
|
|
|
|
|
for token in tokens_b:
|
|
|
|
|
tokens.append(token)
|
|
|
|
|
segment_ids.append(1)
|
|
|
|
|
tokens.append("[SEP]")
|
|
|
|
|
segment_ids.append(1)
|
|
|
|
|
|
|
|
|
|
input_ids = tokenizer.convert_tokens_to_ids(tokens)
|
|
|
|
|
|
|
|
|
|
# The mask has 1 for real tokens and 0 for padding tokens. Only real
|
|
|
|
|
# tokens are attended to.
|
|
|
|
|
input_mask = [1] * len(input_ids)
|
|
|
|
|
|
|
|
|
|
# Zero-pad up to the sequence length.
|
|
|
|
|
while len(input_ids) < max_seq_length:
|
|
|
|
|
input_ids.append(0)
|
|
|
|
|
input_mask.append(0)
|
|
|
|
|
segment_ids.append(0)
|
|
|
|
|
|
|
|
|
|
assert len(input_ids) == max_seq_length
|
|
|
|
|
assert len(input_mask) == max_seq_length
|
|
|
|
|
assert len(segment_ids) == max_seq_length
|
|
|
|
|
|
|
|
|
|
label_id = label_map[example.label]
|
|
|
|
|
if ex_index < 5:
|
|
|
|
|
tf.logging.info("*** Example ***")
|
|
|
|
|
tf.logging.info("guid: %s" % (example.guid))
|
|
|
|
|
tf.logging.info("tokens: %s" % " ".join(
|
|
|
|
|
[tokenization.printable_text(x) for x in tokens]))
|
|
|
|
|
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
|
|
|
|
|
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
|
|
|
|
|
tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
|
|
|
|
|
tf.logging.info("label: %s (id = %d)" % (example.label, label_id))
|
|
|
|
|
|
|
|
|
|
feature = InputFeatures(
|
|
|
|
|
input_ids=input_ids,
|
|
|
|
|
input_mask=input_mask,
|
|
|
|
|
segment_ids=segment_ids,
|
|
|
|
|
label_id=label_id)
|
|
|
|
|
|
|
|
|
|
yield feature
|
|
|
|
|
|
|
|
|
|
def generate_from_queue(self):
|
|
|
|
|
while True:
|
|
|
|
|
predict_examples = self.processor.get_sentence_examples(self.input_queue.get())
|
|
|
|
|
features = list(self.convert_examples_to_features(predict_examples, self.processor.get_labels(),
|
|
|
|
|
args.max_seq_len, self.tokenizer))
|
|
|
|
|
yield {
|
|
|
|
|
'input_ids': [f.input_ids for f in features],
|
|
|
|
|
'input_mask': [f.input_mask for f in features],
|
|
|
|
|
'segment_ids': [f.segment_ids for f in features],
|
|
|
|
|
'label_ids': [f.label_id for f in features]
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
def _truncate_seq_pair(self, tokens_a, tokens_b, max_length):
|
|
|
|
|
"""Truncates a sequence pair in place to the maximum length."""
|
|
|
|
|
|
|
|
|
|
# This is a simple heuristic which will always truncate the longer sequence
|
|
|
|
|
# one token at a time. This makes more sense than truncating an equal percent
|
|
|
|
|
# of tokens from each, since if one sequence is very short then each token
|
|
|
|
|
# that's truncated likely contains more information than a longer sequence.
|
|
|
|
|
while True:
|
|
|
|
|
total_length = len(tokens_a) + len(tokens_b)
|
|
|
|
|
if total_length <= max_length:
|
|
|
|
|
break
|
|
|
|
|
if len(tokens_a) > len(tokens_b):
|
|
|
|
|
tokens_a.pop()
|
|
|
|
|
else:
|
|
|
|
|
tokens_b.pop()
|
|
|
|
|
|
|
|
|
|
def convert_single_example(self, ex_index, example, label_list, max_seq_length, tokenizer):
|
|
|
|
|
"""Converts a single `InputExample` into a single `InputFeatures`."""
|
|
|
|
|
label_map = {}
|
|
|
|
|
for (i, label) in enumerate(label_list):
|
|
|
|
|
label_map[label] = i
|
|
|
|
|
|
|
|
|
|
tokens_a = tokenizer.tokenize(example.text_a)
|
|
|
|
|
tokens_b = None
|
|
|
|
|
if example.text_b:
|
|
|
|
|
tokens_b = tokenizer.tokenize(example.text_b)
|
|
|
|
|
|
|
|
|
|
if tokens_b:
|
|
|
|
|
# Modifies `tokens_a` and `tokens_b` in place so that the total
|
|
|
|
|
# length is less than the specified length.
|
|
|
|
|
# Account for [CLS], [SEP], [SEP] with "- 3"
|
|
|
|
|
self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
|
|
|
|
|
else:
|
|
|
|
|
# Account for [CLS] and [SEP] with "- 2"
|
|
|
|
|
if len(tokens_a) > max_seq_length - 2:
|
|
|
|
|
tokens_a = tokens_a[0:(max_seq_length - 2)]
|
|
|
|
|
|
|
|
|
|
# The convention in BERT is:
|
|
|
|
|
# (a) For sequence pairs:
|
|
|
|
|
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
|
|
|
|
|
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
|
|
|
|
|
# (b) For single sequences:
|
|
|
|
|
# tokens: [CLS] the dog is hairy . [SEP]
|
|
|
|
|
# type_ids: 0 0 0 0 0 0 0
|
|
|
|
|
#
|
|
|
|
|
# Where "type_ids" are used to indicate whether this is the first
|
|
|
|
|
# sequence or the second sequence. The embedding vectors for `type=0` and
|
|
|
|
|
# `type=1` were learned during pre-training and are added to the wordpiece
|
|
|
|
|
# embedding vector (and position vector). This is not *strictly* necessary
|
|
|
|
|
# since the [SEP] token unambiguously separates the sequences, but it makes
|
|
|
|
|
# it easier for the model to learn the concept of sequences.
|
|
|
|
|
#
|
|
|
|
|
# For classification tasks, the first vector (corresponding to [CLS]) is
|
|
|
|
|
# used as as the "sentence vector". Note that this only makes sense because
|
|
|
|
|
# the entire model is fine-tuned.
|
|
|
|
|
tokens = []
|
|
|
|
|
segment_ids = []
|
|
|
|
|
tokens.append("[CLS]")
|
|
|
|
|
segment_ids.append(0)
|
|
|
|
|
for token in tokens_a:
|
|
|
|
|
tokens.append(token)
|
|
|
|
|
segment_ids.append(0)
|
|
|
|
|
tokens.append("[SEP]")
|
|
|
|
|
segment_ids.append(0)
|
|
|
|
|
|
|
|
|
|
if tokens_b:
|
|
|
|
|
for token in tokens_b:
|
|
|
|
|
tokens.append(token)
|
|
|
|
|
segment_ids.append(1)
|
|
|
|
|
tokens.append("[SEP]")
|
|
|
|
|
segment_ids.append(1)
|
|
|
|
|
|
|
|
|
|
input_ids = tokenizer.convert_tokens_to_ids(tokens)
|
|
|
|
|
|
|
|
|
|
# The mask has 1 for real tokens and 0 for padding tokens. Only real
|
|
|
|
|
# tokens are attended to.
|
|
|
|
|
input_mask = [1] * len(input_ids)
|
|
|
|
|
|
|
|
|
|
# Zero-pad up to the sequence length.
|
|
|
|
|
while len(input_ids) < max_seq_length:
|
|
|
|
|
input_ids.append(0)
|
|
|
|
|
input_mask.append(0)
|
|
|
|
|
segment_ids.append(0)
|
|
|
|
|
|
|
|
|
|
assert len(input_ids) == max_seq_length
|
|
|
|
|
assert len(input_mask) == max_seq_length
|
|
|
|
|
assert len(segment_ids) == max_seq_length
|
|
|
|
|
|
|
|
|
|
label_id = label_map[example.label]
|
|
|
|
|
if ex_index < 5:
|
|
|
|
|
tf.logging.info("*** Example ***")
|
|
|
|
|
tf.logging.info("guid: %s" % (example.guid))
|
|
|
|
|
tf.logging.info("tokens: %s" % " ".join(
|
|
|
|
|
[tokenization.printable_text(x) for x in tokens]))
|
|
|
|
|
tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
|
|
|
|
|
tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
|
|
|
|
|
tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
|
|
|
|
|
tf.logging.info("label: %s (id = %d)" % (example.label, label_id))
|
|
|
|
|
|
|
|
|
|
feature = InputFeatures(
|
|
|
|
|
input_ids=input_ids,
|
|
|
|
|
input_mask=input_mask,
|
|
|
|
|
segment_ids=segment_ids,
|
|
|
|
|
label_id=label_id)
|
|
|
|
|
return feature
|
|
|
|
|
|
|
|
|
|
def file_based_convert_examples_to_features(self, examples, label_list, max_seq_length, tokenizer, output_file):
|
|
|
|
|
"""Convert a set of `InputExample`s to a TFRecord file."""
|
|
|
|
|
|
|
|
|
|
writer = tf.python_io.TFRecordWriter(output_file)
|
|
|
|
|
|
|
|
|
|
for (ex_index, example) in enumerate(examples):
|
|
|
|
|
if ex_index % 10000 == 0:
|
|
|
|
|
tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
|
|
|
|
|
|
|
|
|
|
feature = self.convert_single_example(ex_index, example, label_list,
|
|
|
|
|
max_seq_length, tokenizer)
|
|
|
|
|
|
|
|
|
|
def create_int_feature(values):
|
|
|
|
|
f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
|
|
|
|
|
return f
|
|
|
|
|
|
|
|
|
|
features = collections.OrderedDict()
|
|
|
|
|
features["input_ids"] = create_int_feature(feature.input_ids)
|
|
|
|
|
features["input_mask"] = create_int_feature(feature.input_mask)
|
|
|
|
|
features["segment_ids"] = create_int_feature(feature.segment_ids)
|
|
|
|
|
features["label_ids"] = create_int_feature([feature.label_id])
|
|
|
|
|
|
|
|
|
|
tf_example = tf.train.Example(features=tf.train.Features(feature=features))
|
|
|
|
|
writer.write(tf_example.SerializeToString())
|
|
|
|
|
|
|
|
|
|
def file_based_input_fn_builder(self, input_file, seq_length, is_training, drop_remainder):
|
|
|
|
|
"""Creates an `input_fn` closure to be passed to TPUEstimator."""
|
|
|
|
|
|
|
|
|
|
name_to_features = {
|
|
|
|
|
"input_ids": tf.FixedLenFeature([seq_length], tf.int64),
|
|
|
|
|
"input_mask": tf.FixedLenFeature([seq_length], tf.int64),
|
|
|
|
|
"segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
|
|
|
|
|
"label_ids": tf.FixedLenFeature([], tf.int64),
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
def _decode_record(record, name_to_features):
|
|
|
|
|
"""Decodes a record to a TensorFlow example."""
|
|
|
|
|
example = tf.parse_single_example(record, name_to_features)
|
|
|
|
|
|
|
|
|
|
# tf.Example only supports tf.int64, but the TPU only supports tf.int32.
|
|
|
|
|
# So cast all int64 to int32.
|
|
|
|
|
for name in list(example.keys()):
|
|
|
|
|
t = example[name]
|
|
|
|
|
if t.dtype == tf.int64:
|
|
|
|
|
t = tf.to_int32(t)
|
|
|
|
|
example[name] = t
|
|
|
|
|
|
|
|
|
|
return example
|
|
|
|
|
|
|
|
|
|
def input_fn(params):
|
|
|
|
|
"""The actual input function."""
|
|
|
|
|
batch_size = params["batch_size"]
|
|
|
|
|
|
|
|
|
|
# For training, we want a lot of parallel reading and shuffling.
|
|
|
|
|
# For eval, we want no shuffling and parallel reading doesn't matter.
|
|
|
|
|
d = tf.data.TFRecordDataset(input_file)
|
|
|
|
|
if is_training:
|
|
|
|
|
d = d.repeat()
|
|
|
|
|
d = d.shuffle(buffer_size=100)
|
|
|
|
|
|
|
|
|
|
d = d.apply(
|
|
|
|
|
tf.contrib.data.map_and_batch(
|
|
|
|
|
lambda record: _decode_record(record, name_to_features),
|
|
|
|
|
batch_size=batch_size,
|
|
|
|
|
drop_remainder=drop_remainder))
|
|
|
|
|
|
|
|
|
|
return d
|
|
|
|
|
|
|
|
|
|
return input_fn
|
|
|
|
|
|
|
|
|
|
def train(self):
|
|
|
|
|
if self.mode is None:
|
|
|
|
|
raise ValueError("Please set the 'mode' parameter")
|
|
|
|
|
|
|
|
|
|
bert_config = modeling.BertConfig.from_json_file(args.config_name)
|
|
|
|
|
|
|
|
|
|
if args.max_seq_len > bert_config.max_position_embeddings:
|
|
|
|
|
raise ValueError(
|
|
|
|
|
"Cannot use sequence length %d because the BERT model "
|
|
|
|
|
"was only trained up to sequence length %d" %
|
|
|
|
|
(args.max_seq_len, bert_config.max_position_embeddings))
|
|
|
|
|
|
|
|
|
|
tf.gfile.MakeDirs(args.output_dir)
|
|
|
|
|
|
|
|
|
|
label_list = self.processor.get_labels()
|
|
|
|
|
|
|
|
|
|
train_examples = self.processor.get_train_examples(args.data_dir)
|
|
|
|
|
num_train_steps = int(len(train_examples) / args.batch_size * args.num_train_epochs)
|
|
|
|
|
|
|
|
|
|
estimator = self.get_estimator()
|
|
|
|
|
|
|
|
|
|
train_file = os.path.join(args.output_dir, "train.tf_record")
|
|
|
|
|
self.file_based_convert_examples_to_features(train_examples, label_list, args.max_seq_len, self.tokenizer,
|
|
|
|
|
train_file)
|
|
|
|
|
tf.logging.info("***** Running training *****")
|
|
|
|
|
tf.logging.info(" Num examples = %d", len(train_examples))
|
|
|
|
|
tf.logging.info(" Batch size = %d", args.batch_size)
|
|
|
|
|
tf.logging.info(" Num steps = %d", num_train_steps)
|
|
|
|
|
train_input_fn = self.file_based_input_fn_builder(input_file=train_file, seq_length=args.max_seq_len,
|
|
|
|
|
is_training=True,
|
|
|
|
|
drop_remainder=True)
|
|
|
|
|
|
|
|
|
|
# early_stopping = tf.contrib.estimator.stop_if_no_decrease_hook(
|
|
|
|
|
# estimator,
|
|
|
|
|
# metric_name='loss',
|
|
|
|
|
# max_steps_without_decrease=10,
|
|
|
|
|
# min_steps=num_train_steps)
|
|
|
|
|
|
|
|
|
|
# estimator.train(input_fn=train_input_fn, hooks=[early_stopping])
|
|
|
|
|
estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)
|
|
|
|
|
|
|
|
|
|
def eval(self):
|
|
|
|
|
if self.mode is None:
|
|
|
|
|
raise ValueError("Please set the 'mode' parameter")
|
|
|
|
|
eval_examples = self.processor.get_dev_examples(args.data_dir)
|
|
|
|
|
eval_file = os.path.join(args.output_dir, "eval.tf_record")
|
|
|
|
|
label_list = self.processor.get_labels()
|
|
|
|
|
self.file_based_convert_examples_to_features(
|
|
|
|
|
eval_examples, label_list, args.max_seq_len, self.tokenizer, eval_file)
|
|
|
|
|
|
|
|
|
|
tf.logging.info("***** Running evaluation *****")
|
|
|
|
|
tf.logging.info(" Num examples = %d", len(eval_examples))
|
|
|
|
|
tf.logging.info(" Batch size = %d", self.batch_size)
|
|
|
|
|
|
|
|
|
|
eval_input_fn = self.file_based_input_fn_builder(
|
|
|
|
|
input_file=eval_file,
|
|
|
|
|
seq_length=args.max_seq_len,
|
|
|
|
|
is_training=False,
|
|
|
|
|
drop_remainder=False)
|
|
|
|
|
|
|
|
|
|
estimator = self.get_estimator()
|
|
|
|
|
result = estimator.evaluate(input_fn=eval_input_fn, steps=None)
|
|
|
|
|
|
|
|
|
|
output_eval_file = os.path.join(args.output_dir, "eval_results.txt")
|
|
|
|
|
with tf.gfile.GFile(output_eval_file, "w") as writer:
|
|
|
|
|
tf.logging.info("***** Eval results *****")
|
|
|
|
|
for key in sorted(result.keys()):
|
|
|
|
|
tf.logging.info(" %s = %s", key, str(result[key]))
|
|
|
|
|
writer.write("%s = %s\n" % (key, str(result[key])))
|
|
|
|
|
|
|
|
|
|
def predict(self, sentence1, sentence2):
|
|
|
|
|
if self.mode is None:
|
|
|
|
|
raise ValueError("Please set the 'mode' parameter")
|
|
|
|
|
self.input_queue.put([(sentence1, sentence2)])
|
|
|
|
|
prediction = self.output_queue.get()
|
|
|
|
|
return prediction
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
|
sim = BertSim()
|
|
|
|
|
sim.set_mode(tf.estimator.ModeKeys.TRAIN)
|
|
|
|
|
sim.train()
|
|
|
|
|
sim.set_mode(tf.estimator.ModeKeys.EVAL)
|
|
|
|
|
sim.eval()
|
|
|
|
|
# sim.set_mode(tf.estimator.ModeKeys.PREDICT)
|
|
|
|
|
# while True:
|
|
|
|
|
# sentence1 = input('sentence1: ')
|
|
|
|
|
# sentence2 = input('sentence2: ')
|
|
|
|
|
# predict = sim.predict(sentence1, sentence2)
|
|
|
|
|
# print(f'similarity:{predict[0][1]}')
|