125 lines
5.3 KiB
Python
125 lines
5.3 KiB
Python
|
import os
|
|||
|
import tempfile
|
|||
|
import json
|
|||
|
import logging
|
|||
|
from termcolor import colored
|
|||
|
import modeling
|
|||
|
import args
|
|||
|
import contextlib
|
|||
|
|
|||
|
|
|||
|
def import_tf(device_id=-1, verbose=False):
|
|||
|
os.environ['CUDA_VISIBLE_DEVICES'] = '-1' if device_id < 0 else str(device_id)
|
|||
|
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '0' if verbose else '3'
|
|||
|
import tensorflow as tf
|
|||
|
tf.logging.set_verbosity(tf.logging.DEBUG if verbose else tf.logging.ERROR)
|
|||
|
return tf
|
|||
|
|
|||
|
|
|||
|
def set_logger(context, verbose=False):
|
|||
|
logger = logging.getLogger(context)
|
|||
|
logger.setLevel(logging.DEBUG if verbose else logging.INFO)
|
|||
|
formatter = logging.Formatter(
|
|||
|
'%(levelname)-.1s:' + context + ':[%(filename).5s:%(funcName).3s:%(lineno)3d]:%(message)s', datefmt=
|
|||
|
'%m-%d %H:%M:%S')
|
|||
|
console_handler = logging.StreamHandler()
|
|||
|
console_handler.setLevel(logging.DEBUG if verbose else logging.INFO)
|
|||
|
console_handler.setFormatter(formatter)
|
|||
|
logger.handlers = []
|
|||
|
logger.addHandler(console_handler)
|
|||
|
return logger
|
|||
|
|
|||
|
|
|||
|
def optimize_graph(logger=None, verbose=False):
|
|||
|
if not logger:
|
|||
|
logger = set_logger(colored('BERT_VEC', 'yellow'), verbose)
|
|||
|
try:
|
|||
|
# we don't need GPU for optimizing the graph
|
|||
|
tf = import_tf(device_id=0, verbose=verbose)
|
|||
|
from tensorflow.python.tools.optimize_for_inference_lib import optimize_for_inference
|
|||
|
|
|||
|
# allow_soft_placement:自动选择运行设备
|
|||
|
config = tf.ConfigProto(allow_soft_placement=True)
|
|||
|
config_fp = args.config_name
|
|||
|
init_checkpoint = args.ckpt_name
|
|||
|
logger.info('model config: %s' % config_fp)
|
|||
|
|
|||
|
# 加载bert配置文件
|
|||
|
with tf.gfile.GFile(config_fp, 'r') as f:
|
|||
|
bert_config = modeling.BertConfig.from_dict(json.load(f))
|
|||
|
|
|||
|
logger.info('build graph...')
|
|||
|
# input placeholders, not sure if they are friendly to XLA
|
|||
|
input_ids = tf.placeholder(tf.int32, (None, args.max_seq_len), 'input_ids')
|
|||
|
input_mask = tf.placeholder(tf.int32, (None, args.max_seq_len), 'input_mask')
|
|||
|
input_type_ids = tf.placeholder(tf.int32, (None, args.max_seq_len), 'input_type_ids')
|
|||
|
|
|||
|
# xla加速
|
|||
|
jit_scope = tf.contrib.compiler.jit.experimental_jit_scope if args.xla else contextlib.suppress
|
|||
|
|
|||
|
with jit_scope():
|
|||
|
input_tensors = [input_ids, input_mask, input_type_ids]
|
|||
|
|
|||
|
model = modeling.BertModel(
|
|||
|
config=bert_config,
|
|||
|
is_training=False,
|
|||
|
input_ids=input_ids,
|
|||
|
input_mask=input_mask,
|
|||
|
token_type_ids=input_type_ids,
|
|||
|
use_one_hot_embeddings=False)
|
|||
|
|
|||
|
# 获取所有要训练的变量
|
|||
|
tvars = tf.trainable_variables()
|
|||
|
|
|||
|
(assignment_map, initialized_variable_names) = modeling.get_assignment_map_from_checkpoint(tvars,
|
|||
|
init_checkpoint)
|
|||
|
|
|||
|
tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
|
|||
|
|
|||
|
minus_mask = lambda x, m: x - tf.expand_dims(1.0 - m, axis=-1) * 1e30
|
|||
|
mul_mask = lambda x, m: x * tf.expand_dims(m, axis=-1)
|
|||
|
masked_reduce_max = lambda x, m: tf.reduce_max(minus_mask(x, m), axis=1)
|
|||
|
masked_reduce_mean = lambda x, m: tf.reduce_sum(mul_mask(x, m), axis=1) / (
|
|||
|
tf.reduce_sum(m, axis=1, keepdims=True) + 1e-10)
|
|||
|
|
|||
|
# 共享卷积核
|
|||
|
with tf.variable_scope("pooling"):
|
|||
|
# 如果只有一层,就只取对应那一层的weight
|
|||
|
if len(args.layer_indexes) == 1:
|
|||
|
encoder_layer = model.all_encoder_layers[args.layer_indexes[0]]
|
|||
|
else:
|
|||
|
# 否则遍历需要取的层,把所有层的weight取出来并拼接起来shape:768*层数
|
|||
|
all_layers = [model.all_encoder_layers[l] for l in args.layer_indexes]
|
|||
|
encoder_layer = tf.concat(all_layers, -1)
|
|||
|
|
|||
|
input_mask = tf.cast(input_mask, tf.float32)
|
|||
|
|
|||
|
# 以下代码是句向量的生成方法,可以理解为做了一个卷积的操作,但是没有把结果相加, 卷积核是input_mask
|
|||
|
pooled = masked_reduce_mean(encoder_layer, input_mask)
|
|||
|
pooled = tf.identity(pooled, 'final_encodes')
|
|||
|
|
|||
|
output_tensors = [pooled]
|
|||
|
tmp_g = tf.get_default_graph().as_graph_def()
|
|||
|
|
|||
|
with tf.Session(config=config) as sess:
|
|||
|
logger.info('load parameters from checkpoint...')
|
|||
|
sess.run(tf.global_variables_initializer())
|
|||
|
logger.info('freeze...')
|
|||
|
tmp_g = tf.graph_util.convert_variables_to_constants(sess, tmp_g, [n.name[:-2] for n in output_tensors])
|
|||
|
dtypes = [n.dtype for n in input_tensors]
|
|||
|
logger.info('optimize...')
|
|||
|
tmp_g = optimize_for_inference(
|
|||
|
tmp_g,
|
|||
|
[n.name[:-2] for n in input_tensors],
|
|||
|
[n.name[:-2] for n in output_tensors],
|
|||
|
[dtype.as_datatype_enum for dtype in dtypes],
|
|||
|
False)
|
|||
|
tmp_file = tempfile.NamedTemporaryFile('w', delete=False).name
|
|||
|
logger.info('write graph to a tmp file: %s' % tmp_file)
|
|||
|
with tf.gfile.GFile(tmp_file, 'wb') as f:
|
|||
|
f.write(tmp_g.SerializeToString())
|
|||
|
return tmp_file
|
|||
|
except Exception as e:
|
|||
|
logger.error('fail to optimize the graph!')
|
|||
|
logger.error(e)
|