159 lines
5.9 KiB
Python
Executable File
159 lines
5.9 KiB
Python
Executable File
#!/usr/bin/env python
|
||
# -*- coding: utf-8 -*-
|
||
#=========================================================================
|
||
#
|
||
# Copyright (c) 2017 <> All Rights Reserved
|
||
#
|
||
#
|
||
# File: /Users/hain/ai/Synonyms/demo.py
|
||
# Author: Hai Liang Wang
|
||
# Date: 2017-09-28:22:23:34
|
||
#
|
||
#=========================================================================
|
||
|
||
"""
|
||
|
||
"""
|
||
from __future__ import print_function
|
||
from __future__ import division
|
||
|
||
__copyright__ = "Copyright (c) (2017-2022) Chatopera Inc. All Rights Reserved"
|
||
__author__ = "Hai Liang Wang"
|
||
__date__ = "2017-09-28:22:23:34"
|
||
|
||
|
||
import os
|
||
import sys
|
||
curdir = os.path.dirname(os.path.abspath(__file__))
|
||
sys.path.append(curdir)
|
||
|
||
if sys.version_info[0] < 3:
|
||
reload(sys)
|
||
sys.setdefaultencoding("utf-8")
|
||
# raise "Must be using Python 3"
|
||
#
|
||
|
||
import synonyms # https://github.com/huyingxi/Synonyms
|
||
import numpy
|
||
import unittest
|
||
|
||
compare_ = lambda x,y,z: "%s vs %s: %f" % (x, y, synonyms.compare(x, y, seg=z)) + "\n" +"*"* 30 + "\n"
|
||
|
||
# run testcase: python /Users/hain/ai/Synonyms/demo.py Test.testExample
|
||
class Test(unittest.TestCase):
|
||
'''
|
||
|
||
'''
|
||
|
||
def setUp(self):
|
||
pass
|
||
|
||
def tearDown(self):
|
||
pass
|
||
|
||
def test_wordseg(self):
|
||
print("test_wordseg")
|
||
print(synonyms.seg("中文近义词工具包"))
|
||
|
||
|
||
def test_word_vector(self):
|
||
print("test_word_vector")
|
||
word = "三国"
|
||
print(word, "向量", synonyms.v(word))
|
||
|
||
def test_diff(self):
|
||
print("test_diff")
|
||
result = []
|
||
# 30个 评测词对中的左侧词
|
||
left = ['轿车', '宝石', '旅游', '男孩子', '海岸', '庇护所', '魔术师', '中午', '火炉', '食物', '鸟', '鸟', '工具', '兄弟', '起重机', '小伙子',
|
||
'旅行', '和尚', '墓地', '食物', '海岸', '森林', '岸边', '和尚', '海岸', '小伙子', '琴弦', '玻璃', '中午', '公鸡']
|
||
# 30个 评测词对中的右侧词
|
||
right = ['汽车', '宝物', '游历', '小伙子', '海滨', '精神病院', '巫师', '正午', '炉灶', '水果', '公鸡', '鹤', '器械', '和尚', '器械', '兄弟',
|
||
'轿车', '圣贤', '林地', '公鸡', '丘陵', '墓地', '林地', '奴隶', '森林', '巫师', '微笑', '魔术师', '绳子', '航行']
|
||
# 人工评定的相似度列表。
|
||
human = [0.98, 0.96, 0.96, 0.94, 0.925, 0.9025, 0.875, 0.855, 0.7775, 0.77, 0.7625, 0.7425, 0.7375, 0.705, 0.42, 0.415,
|
||
0.29, 0.275, 0.2375,
|
||
0.2225, 0.2175, 0.21, 0.1575, 0.1375, 0.105, 0.105, 0.0325, 0.0275, 0.02, 0.02]
|
||
result.append("# synonyms 分数评测 [(v%s)](https://pypi.python.org/pypi/synonyms/%s)" % (synonyms.__version__, synonyms.__version__))
|
||
result.append("| %s | %s | %s | %s |" % ("词1", "词2", "synonyms", "人工评定"))
|
||
result.append("| --- | --- | --- | --- |")
|
||
for x,y,z in zip(left, right, human):
|
||
result.append("| %s | %s | %s | %s |" % (x, y, synonyms.compare(x, y), z))
|
||
for x in result: print(x)
|
||
with open(os.path.join(curdir, "VALUATION.md"), "w") as fout:
|
||
for x in result: fout.write(x + "\n")
|
||
|
||
def test_similarity(self):
|
||
'''
|
||
Generate sentence similarity
|
||
'''
|
||
sen1 = "旗帜引领方向"
|
||
sen2 = "道路决定命运"
|
||
r = synonyms.compare(sen1, sen2, seg=True)
|
||
print("旗帜引领方向 vs 道路决定命运:", r)
|
||
# assert r == 0.0, "the similarity should be zero"
|
||
|
||
sen1 = "旗帜引领方向"
|
||
sen2 = "旗帜指引道路"
|
||
r = synonyms.compare(sen1, sen2, seg=True)
|
||
print("旗帜引领方向 vs 旗帜指引道路:", r)
|
||
# assert r > 0, "the similarity should be bigger then zero"
|
||
|
||
sen1 = "发生历史性变革"
|
||
sen2 = "发生历史性变革"
|
||
r = synonyms.compare(sen1, sen2, seg=True)
|
||
print("发生历史性变革 vs 发生历史性变革:", r)
|
||
# assert r > 0, "the similarity should be bigger then zero"
|
||
|
||
sen1 = "骨折"
|
||
sen2 = "巴赫"
|
||
r = synonyms.compare(sen1, sen2, seg=True)
|
||
print("%s vs %s" % (sen1, sen2), r)
|
||
|
||
|
||
sen1 = "你们好呀"
|
||
sen2 = "大家好"
|
||
r = synonyms.compare(sen1, sen2, seg=False)
|
||
print("%s vs %s" % (sen1, sen2), r)
|
||
|
||
|
||
def test_swap_sent(self):
|
||
print("test_swap_sent")
|
||
s1 = synonyms.compare("教学", "老师")
|
||
s2 = synonyms.compare("老师", "教学")
|
||
print('"教学", "老师": %s ' % s1)
|
||
print('"老师", "教学": %s ' % s2)
|
||
assert s1 == s2, "Scores should be the same after swap sents"
|
||
|
||
def test_nearby(self):
|
||
synonyms.display("奥运") # synonyms.display calls synonyms.nearby
|
||
synonyms.display("北新桥") # synonyms.display calls synonyms.nearby
|
||
|
||
|
||
def test_badcase_1(self):
|
||
synonyms.display("人脸") # synonyms.display calls synonyms.nearby
|
||
|
||
|
||
def test_basecase_2(self):
|
||
print("test_basecase_2")
|
||
sen1 = "今天天气"
|
||
sen2 = "今天天气怎么样"
|
||
r = synonyms.compare(sen1, sen2, seg=True)
|
||
|
||
|
||
def test_analyse_extract_tags(self):
|
||
'''
|
||
使用 Tag 方式获得关键词
|
||
https://github.com/fxsjy/jieba/tree/v0.39
|
||
'''
|
||
sentence = "华为芯片被断供,源于美国关于华为的修订版禁令生效——9月15日以来,台积电、高通、三星等华为的重要合作伙伴,只要没有美国的相关许可证,都无法供应芯片给华为,而中芯国际等国产芯片企业,也因采用美国技术,而无法供货给华为。目前华为部分型号的手机产品出现货少的现象,若该形势持续下去,华为手机业务将遭受重创。"
|
||
keywords = synonyms.keywords(sentence, topK=5, withWeight=False, allowPOS=())
|
||
print("[test_analyse_extract_tags] keywords %s" % keywords)
|
||
|
||
def test():
|
||
unittest.main()
|
||
|
||
|
||
if __name__ == '__main__':
|
||
test()
|