Synonyms/synonyms/word2vec.py

259 lines
9.6 KiB
Python
Raw Normal View History

2017-10-31 16:54:55 +08:00
#!/usr/bin/env python
# -*- coding: utf-8 -*-
#
# Copyright (C) 2016 Radim Rehurek <me@radimrehurek.com>
# Modifications (C) 2017 Hai Liang Wang <hailiang.hl.wang@gmail.com>
# Licensed under the GNU LGPL v3.0 - http://www.gnu.org/licenses/lgpl.html
# Author: Hai Liang Wang
# Date: 2017-10-16:14:13:24
#
#=========================================================================
from __future__ import print_function
from __future__ import division
__copyright__ = "Copyright (c) 2017 . All Rights Reserved"
__author__ = "Hai Liang Wang"
__date__ = "2017-10-16:14:13:24"
import os
import sys
curdir = os.path.dirname(os.path.abspath(__file__))
sys.path.append(curdir)
if sys.version_info[0] < 3:
reload(sys)
sys.setdefaultencoding("utf-8")
# raise "Must be using Python 3"
else:
xrange = range
import utils
from numpy import dot, zeros, dtype, float32 as REAL,\
double, array, vstack, fromstring, sqrt, newaxis,\
ndarray, sum as np_sum, prod, ascontiguousarray,\
argmax
class Vocab(object):
"""
A single vocabulary item, used internally for collecting per-word frequency/sampling info,
and for constructing binary trees (incl. both word leaves and inner nodes).
"""
def __init__(self, **kwargs):
self.count = 0
self.__dict__.update(kwargs)
def __lt__(self, other): # used for sorting in a priority queue
return self.count < other.count
def __str__(self):
vals = [
'%s:%r' %
(key,
self.__dict__[key]) for key in sorted(
self.__dict__) if not key.startswith('_')]
return "%s(%s)" % (self.__class__.__name__, ', '.join(vals))
class KeyedVectors():
"""
Class to contain vectors and vocab for the Word2Vec training class and other w2v methods not directly
involved in training such as most_similar()
"""
def __init__(self):
self.syn0 = []
self.syn0norm = None
self.vocab = {}
self.index2word = []
self.vector_size = None
@property
def wv(self):
return self
def save(self, *args, **kwargs):
# don't bother storing the cached normalized vectors
kwargs['ignore'] = kwargs.get('ignore', ['syn0norm'])
super(KeyedVectors, self).save(*args, **kwargs)
@classmethod
def load_word2vec_format(
cls,
fname,
fvocab=None,
binary=False,
encoding='utf8',
unicode_errors='strict',
limit=None,
datatype=REAL):
"""
Load the input-hidden weight matrix from the original C word2vec-tool format.
Note that the information stored in the file is incomplete (the binary tree is missing),
so while you can query for word similarity etc., you cannot continue training
with a model loaded this way.
`binary` is a boolean indicating whether the data is in binary word2vec format.
`norm_only` is a boolean indicating whether to only store normalised word2vec vectors in memory.
Word counts are read from `fvocab` filename, if set (this is the file generated
by `-save-vocab` flag of the original C tool).
If you trained the C model using non-utf8 encoding for words, specify that
encoding in `encoding`.
`unicode_errors`, default 'strict', is a string suitable to be passed as the `errors`
argument to the unicode() (Python 2.x) or str() (Python 3.x) function. If your source
file may include word tokens truncated in the middle of a multibyte unicode character
(as is common from the original word2vec.c tool), 'ignore' or 'replace' may help.
`limit` sets a maximum number of word-vectors to read from the file. The default,
None, means read all.
`datatype` (experimental) can coerce dimensions to a non-default float type (such
as np.float16) to save memory. (Such types may result in much slower bulk operations
or incompatibility with optimized routines.)
"""
counts = None
if fvocab is not None:
print("loading word counts from %s" % fvocab)
counts = {}
with utils.smart_open(fvocab) as fin:
for line in fin:
word, count = utils.to_unicode(line).strip().split()
counts[word] = int(count)
print("loading projection weights from %s" % fname)
with utils.smart_open(fname) as fin:
header = utils.to_unicode(fin.readline(), encoding=encoding)
# throws for invalid file format
vocab_size, vector_size = (int(x) for x in header.split())
if limit:
vocab_size = min(vocab_size, limit)
result = cls()
result.vector_size = vector_size
result.syn0 = zeros((vocab_size, vector_size), dtype=datatype)
def add_word(word, weights):
word_id = len(result.vocab)
# print("word id: %d, word: %s, weights: %s" % (word_id, word, weights))
if word in result.vocab:
print(
"duplicate word '%s' in %s, ignoring all but first" %
(word, fname))
return
if counts is None:
# most common scenario: no vocab file given. just make up
# some bogus counts, in descending order
result.vocab[word] = Vocab(
index=word_id, count=vocab_size - word_id)
elif word in counts:
# use count from the vocab file
result.vocab[word] = Vocab(
index=word_id, count=counts[word])
else:
# vocab file given, but word is missing -- set count to
# None (TODO: or raise?)
print(
"vocabulary file is incomplete: '%s' is missing" %
word)
result.vocab[word] = Vocab(index=word_id, count=None)
result.syn0[word_id] = weights
result.index2word.append(word)
if binary:
binary_len = dtype(REAL).itemsize * vector_size
for _ in xrange(vocab_size):
# mixed text and binary: read text first, then binary
word = []
while True:
ch = fin.read(1)
if ch == b' ':
break
if ch == b'':
raise EOFError(
"unexpected end of input; is count incorrect or file otherwise damaged?")
# ignore newlines in front of words (some binary files
# have)
if ch != b'\n':
word.append(ch)
word = utils.to_unicode(
b''.join(word), encoding=encoding, errors=unicode_errors)
weights = fromstring(fin.read(binary_len), dtype=REAL)
add_word(word, weights)
else:
for line_no in xrange(vocab_size):
line = fin.readline()
if line == b'':
raise EOFError(
"unexpected end of input; is count incorrect or file otherwise damaged?")
parts = utils.to_unicode(
line.rstrip(),
encoding=encoding,
errors=unicode_errors).split(" ")
if len(parts) != vector_size + 1:
raise ValueError(
"invalid vector on line %s (is this really the text format?)" %
line_no)
word, weights = parts[0], [REAL(x) for x in parts[1:]]
add_word(word, weights)
if result.syn0.shape[0] != len(result.vocab):
print(
"duplicate words detected, shrinking matrix size from %i to %i" %
(result.syn0.shape[0], len(result.vocab)))
result.syn0 = ascontiguousarray(result.syn0[: len(result.vocab)])
assert (len(result.vocab), vector_size) == result.syn0.shape
print("loaded %s matrix from %s" % (result.syn0.shape, fname))
return result
def word_vec(self, word, use_norm=False):
"""
Accept a single word as input.
Returns the word's representations in vector space, as a 1D numpy array.
If `use_norm` is True, returns the normalized word vector.
Example::
>>> trained_model['office']
array([ -1.40128313e-02, ...])
"""
if word in self.vocab:
if use_norm:
result = self.syn0norm[self.vocab[word].index]
else:
result = self.syn0[self.vocab[word].index]
result.setflags(write=False)
return result
else:
raise KeyError("word '%s' not in vocabulary" % word)
import unittest
# run testcase: python /Users/hain/tmp/ss Test.testExample
class Test(unittest.TestCase):
'''
'''
def setUp(self):
pass
def tearDown(self):
pass
def test_load_w2v_data(self):
_fin_wv_path = os.path.join(curdir, 'data', 'words.vector')
_fin_stopwords_path = os.path.join(curdir, 'data', 'stopwords.txt')
kv = KeyedVectors()
binary = True
kv.load_word2vec_format(
_fin_wv_path,
binary=binary,
unicode_errors='ignore')
def test():
unittest.main()
if __name__ == '__main__':
test()