89 lines
5.1 KiB
Python
89 lines
5.1 KiB
Python
# -*- coding: UTF-8 -*-
|
||
# !/usr/bin/python
|
||
# @time :2019/6/3 10:51
|
||
# @author :Mo
|
||
# @function :train of textcnn-char-random with baidu-qa-2019 in question title
|
||
|
||
# 适配linux
|
||
import pathlib
|
||
import sys
|
||
import os
|
||
project_path = str(pathlib.Path(os.path.abspath(__file__)).parent.parent.parent)
|
||
sys.path.append(project_path)
|
||
# 地址
|
||
from keras_textclassification.conf.path_config import path_model, path_fineture, path_model_dir, path_hyper_parameters
|
||
# 训练验证数据地址
|
||
from keras_textclassification.conf.path_config import path_baidu_qa_2019_train, path_baidu_qa_2019_valid
|
||
# 数据预处理, 删除文件目录下文件
|
||
from keras_textclassification.data_preprocess.text_preprocess import PreprocessText, delete_file
|
||
# 模型图
|
||
from keras_textclassification.m02_TextCNN.graph import TextCNNGraph as Graph
|
||
# 计算时间
|
||
import time
|
||
|
||
|
||
def train(hyper_parameters=None, rate=1.0):
|
||
if not hyper_parameters:
|
||
hyper_parameters = {
|
||
'len_max': 50, # 句子最大长度, 固定推荐20-50, bert越长会越慢, 占用空间也会变大, 本地win10-4G设为20就好, 过大小心OOM
|
||
'embed_size': 300, # 字/词向量维度, bert取768, word取300, char可以更小些
|
||
'vocab_size': 20000, # 这里随便填的,会根据代码里修改
|
||
'trainable': True, # embedding是静态的还是动态的, 即控制可不可以微调
|
||
'level_type': 'char', # 级别, 最小单元, 字/词, 填 'char' or 'word', 注意:word2vec模式下训练语料要首先切好
|
||
'embedding_type': 'random', # 级别, 嵌入类型, 还可以填'xlnet'、'random'、 'bert'、 'albert' or 'word2vec"
|
||
'gpu_memory_fraction': 0.66, #gpu使用率
|
||
'model': {'label': 17, # 类别数
|
||
'batch_size': 32, # 批处理尺寸, 感觉原则上越大越好,尤其是样本不均衡的时候, batch_size设置影响比较大
|
||
'dropout': 0.5, # 随机失活, 概率
|
||
'decay_step': 100, # 学习率衰减step, 每N个step衰减一次
|
||
'decay_rate': 0.9, # 学习率衰减系数, 乘法
|
||
'epochs': 20, # 训练最大轮次
|
||
'patience': 3, # 早停,2-3就好
|
||
'lr': 1e-3, # 学习率,bert取5e-5,其他取1e-3, 对训练会有比较大的影响, 如果准确率一直上不去,可以考虑调这个参数
|
||
'l2': 1e-9, # l2正则化
|
||
'activate_classify': 'softmax', # 最后一个layer, 即分类激活函数
|
||
'loss': 'categorical_crossentropy', # 损失函数
|
||
'metrics': 'accuracy', # 保存更好模型的评价标准
|
||
'is_training': True, # 训练后者是测试模型
|
||
'model_path': path_model,
|
||
# 模型地址, loss降低则保存的依据, save_best_only=True, save_weights_only=True
|
||
'path_hyper_parameters': path_hyper_parameters, # 模型(包括embedding),超参数地址,
|
||
'path_fineture': path_fineture, # 保存embedding trainable地址, 例如字向量、词向量、bert向量等
|
||
},
|
||
'embedding': {'layer_indexes': [12], # bert取的层数
|
||
# 'corpus_path': '', # embedding预训练数据地址,不配则会默认取conf里边默认的地址, keras-bert可以加载谷歌版bert,百度版ernie(需转换,https://github.com/ArthurRizar/tensorflow_ernie),哈工大版bert-wwm(tf框架,https://github.com/ymcui/Chinese-BERT-wwm)
|
||
},
|
||
'data':{'train_data': path_baidu_qa_2019_train, # 训练数据
|
||
'val_data': path_baidu_qa_2019_valid # 验证数据
|
||
},
|
||
}
|
||
|
||
# 删除先前存在的模型和embedding微调模型等
|
||
delete_file(path_model_dir)
|
||
time_start = time.time()
|
||
# graph初始化
|
||
graph = Graph(hyper_parameters)
|
||
print("graph init ok!")
|
||
ra_ed = graph.word_embedding
|
||
# 数据预处理
|
||
pt = PreprocessText(path_model_dir)
|
||
x_train, y_train = pt.preprocess_label_ques_to_idx(hyper_parameters['embedding_type'],
|
||
hyper_parameters['data']['train_data'],
|
||
ra_ed, rate=rate, shuffle=True)
|
||
x_val, y_val = pt.preprocess_label_ques_to_idx(hyper_parameters['embedding_type'],
|
||
hyper_parameters['data']['val_data'],
|
||
ra_ed, rate=rate, shuffle=True)
|
||
print("data propress ok!")
|
||
print(len(y_train))
|
||
# 训练
|
||
graph.fit(x_train, y_train, x_val, y_val)
|
||
print("耗时:" + str(time.time()-time_start))
|
||
|
||
|
||
if __name__=="__main__":
|
||
train(rate=1)
|
||
# 注意: 4G的1050Ti的GPU、win10下batch_size=32,len_max=20, gpu<=0.87, 应该就可以bert-fineture了。
|
||
# 全量数据训练一轮(batch_size=32),就能达到80%准确率(验证集), 效果还是不错的
|
||
# win10下出现过错误,gpu、len_max、batch_size配小一点就好:ailed to allocate 3.56G (3822520832 bytes) from device: CUDA_ERROR_OUT_OF_MEMORY: out of memory
|
||
|