2019-10-28 15:05:41 +08:00
|
|
|
|
# -*- coding: UTF-8 -*-
|
|
|
|
|
# !/usr/bin/python
|
|
|
|
|
# @time :2019/6/8 14:37
|
|
|
|
|
# @author :Mo
|
|
|
|
|
# @function :train of bert-fune with baidu-qa-2019 in question title
|
|
|
|
|
|
|
|
|
|
# 适配linux
|
|
|
|
|
import pathlib
|
|
|
|
|
import sys
|
|
|
|
|
import os
|
2019-11-03 00:12:11 +08:00
|
|
|
|
|
2019-10-28 15:05:41 +08:00
|
|
|
|
project_path = str(pathlib.Path(os.path.abspath(__file__)).parent.parent.parent)
|
|
|
|
|
sys.path.append(project_path)
|
|
|
|
|
# 地址
|
|
|
|
|
from keras_textclassification.conf.path_config import path_model, path_fineture, path_model_dir, path_hyper_parameters
|
|
|
|
|
# 训练验证数据地址
|
|
|
|
|
from keras_textclassification.conf.path_config import path_sim_webank_train, path_sim_webank_valid
|
|
|
|
|
# 数据预处理, 删除文件目录下文件
|
|
|
|
|
from keras_textclassification.data_preprocess.text_preprocess import PreprocessSim, delete_file
|
|
|
|
|
# 模型图
|
|
|
|
|
from keras_textclassification.m00_Bert.graph import BertGraph as Graph
|
|
|
|
|
# 计算时间
|
|
|
|
|
import time
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def train(hyper_parameters=None, rate=1.0):
|
|
|
|
|
"""
|
|
|
|
|
训练函数
|
|
|
|
|
:param hyper_parameters: json, 超参数
|
|
|
|
|
:param rate: 比率, 抽出rate比率语料取训练
|
|
|
|
|
:return: None
|
|
|
|
|
"""
|
|
|
|
|
if not hyper_parameters:
|
|
|
|
|
hyper_parameters = {
|
2019-11-03 00:12:11 +08:00
|
|
|
|
'len_max': 18, # 句子最大长度, 固定 推荐20-50
|
|
|
|
|
'embed_size': 768, # 字/词向量维度
|
|
|
|
|
'vocab_size': 20000, # 这里随便填的,会根据代码里修改
|
|
|
|
|
'trainable': True, # embedding是静态的还是动态的, 即控制可不可以微调
|
|
|
|
|
'level_type': 'char', # 级别, 最小单元, 字/词, 填 'char' or 'word'
|
2021-07-23 09:29:48 +08:00
|
|
|
|
'embedding_type': 'bert', # 级别, 嵌入类型, 还可以填'xlnet'、'random'、 'bert'、 'albert' or 'word2vec"
|
2019-11-03 00:12:11 +08:00
|
|
|
|
'gpu_memory_fraction': 0.76, # gpu使用率
|
|
|
|
|
'model': {'label': 2, # 类别数
|
|
|
|
|
'batch_size': 2, # 批处理尺寸, 感觉原则上越大越好,尤其是样本不均衡的时候, batch_size设置影响比较大
|
|
|
|
|
'filters': [2, 3, 4, 5], # 卷积核尺寸
|
|
|
|
|
'filters_num': 300, # 卷积个数 text-cnn:300-600
|
|
|
|
|
'channel_size': 1, # CNN通道数
|
|
|
|
|
'dropout': 0.5, # 随机失活, 概率
|
|
|
|
|
'decay_step': 100, # 学习率衰减step, 每N个step衰减一次
|
|
|
|
|
'decay_rate': 0.9, # 学习率衰减系数, 乘法
|
|
|
|
|
'epochs': 20, # 训练最大轮次
|
|
|
|
|
'patience': 3, # 早停,2-3就好
|
|
|
|
|
'lr': 5e-5, # 学习率, 对训练会有比较大的影响, 如果准确率一直上不去,可以考虑调这个参数
|
|
|
|
|
'l2': 1e-9, # l2正则化
|
|
|
|
|
'activate_classify': 'sigmoid', # 最后一个layer, 即分类激活函数
|
|
|
|
|
'loss': 'binary_crossentropy', # 损失函数
|
|
|
|
|
'metrics': 'accuracy', # 保存更好模型的评价标准
|
|
|
|
|
'is_training': True, # 训练后者是测试模型
|
|
|
|
|
'model_path': path_model,
|
|
|
|
|
# 模型地址, loss降低则保存的依据, save_best_only=True, save_weights_only=True
|
|
|
|
|
'path_hyper_parameters': path_hyper_parameters, # 模型(包括embedding),超参数地址,
|
|
|
|
|
'path_fineture': path_fineture, # 保存embedding trainable地址, 例如字向量、词向量、bert向量等
|
|
|
|
|
},
|
|
|
|
|
'embedding': {'layer_indexes': [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13], # bert取的层数,包括embedding层
|
|
|
|
|
# 'corpus_path': '', # embedding预训练数据地址,不配则会默认取conf里边默认的地址, keras-bert可以加载谷歌版bert,百度版ernie(需转换,https://github.com/ArthurRizar/tensorflow_ernie),哈工大版bert-wwm(tf框架,https://github.com/ymcui/Chinese-BERT-wwm)
|
|
|
|
|
},
|
|
|
|
|
'data': {'train_data': path_sim_webank_train, # 训练数据
|
|
|
|
|
'val_data': path_sim_webank_valid # 验证数据
|
|
|
|
|
},
|
|
|
|
|
}
|
2019-10-28 15:05:41 +08:00
|
|
|
|
|
|
|
|
|
# 删除先前存在的模型\embedding微调模型等
|
|
|
|
|
delete_file(path_model_dir)
|
|
|
|
|
time_start = time.time()
|
|
|
|
|
# graph初始化
|
|
|
|
|
graph = Graph(hyper_parameters)
|
|
|
|
|
print("graph init ok!")
|
|
|
|
|
ra_ed = graph.word_embedding
|
|
|
|
|
# 数据预处理
|
2020-11-10 09:50:12 +08:00
|
|
|
|
pt = PreprocessSim(path_model_dir)
|
2019-10-28 15:05:41 +08:00
|
|
|
|
x_train, y_train = pt.preprocess_label_ques_to_idx(hyper_parameters['embedding_type'],
|
|
|
|
|
hyper_parameters['data']['train_data'],
|
|
|
|
|
ra_ed, rate=rate, shuffle=True)
|
|
|
|
|
x_val, y_val = pt.preprocess_label_ques_to_idx(hyper_parameters['embedding_type'],
|
|
|
|
|
hyper_parameters['data']['val_data'],
|
|
|
|
|
ra_ed, rate=rate, shuffle=True)
|
|
|
|
|
print("data propress ok!")
|
|
|
|
|
print(len(y_train))
|
|
|
|
|
# 训练
|
|
|
|
|
graph.fit(x_train, y_train, x_val, y_val)
|
2019-11-03 00:12:11 +08:00
|
|
|
|
print("耗时:" + str(time.time() - time_start))
|
2019-10-28 15:05:41 +08:00
|
|
|
|
|
|
|
|
|
|
2019-11-03 00:12:11 +08:00
|
|
|
|
if __name__ == "__main__":
|
2019-10-28 15:05:41 +08:00
|
|
|
|
train(rate=0.1)
|