Update README.md

This commit is contained in:
missQian 2020-09-28 22:22:50 +08:00 committed by GitHub
parent 39cc52f6d9
commit e198baf8d9
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

View File

@ -1,7 +1,24 @@
# Event-Extraction事件抽取资料综述总结更新中...
近年来事件抽取方法总结包括中文事件抽取、开放域事件抽取、事件数据生成、跨语言事件抽取、小样本事件抽取、零样本事件抽取等类型DMCNN、FramNet、DLRNN、DBRNN、GCN、DAG-GRU、JMEE、PLMEE等方法
## 事件抽取的定义
# Table of Contents 目录
- [Define综述论文](#Define)
- [Surveys综述论文](#Surveys)
- [Shallow Learning Models浅层学习模型](#Shallow-Learning-Models)
- [Deep Learning Models深度学习模型](#Deep-Learning-Models)
- [Datasets数据集](#Datasets)
- [Evaluation Metrics评价指标](#Evaluation-Metrics)
- [Future Research Challenges未来研究挑战](#Future-Research-Challenges)
- [Tools and Repos工具与资源](#tools-and-repos)
</p></blockquote></details>
---
## Define(事件抽取的定义)
[:arrow_up:](#Define)
### Closed-domain
@ -111,24 +128,11 @@ deciding whether a pair of stories discuss the same topic.
The first two tasks mainly focus on event detection; and the rest three tasks are for event clustering. While the relation between the five tasks is evident, each requires a distinct evaluation process and encourages different approaches to address the particular problem.
# Table of Contents 目录
- [Surveys综述论文](#Surveys)
- [Shallow Learning Models浅层学习模型](#Shallow-Learning-Models)
- [Deep Learning Models深度学习模型](#Deep-Learning-Models)
- [Datasets数据集](#Datasets)
- [Evaluation Metrics评价指标](#Evaluation-Metrics)
- [Future Research Challenges未来研究挑战](#Future-Research-Challenges)
- [Tools and Repos工具与资源](#tools-and-repos)
</p></blockquote></details>
---
## Surveys(综述论文)
[:arrow_up:](#table-of-contents)
[:arrow_up:](#Surveys)
### 事件抽取综述
@ -246,7 +250,7 @@ The scarcity in annotated data poses a great challenge for event detection (ED).
###Few-shot or zero-shot
### Few-shot or zero-shot
#### 2019
<details/>