This commit is contained in:
loujie0822 2020-08-13 07:04:45 +08:00
parent afce3517f9
commit a951d3075c
5 changed files with 310 additions and 17 deletions

View File

@ -1,3 +1,6 @@
"""
随机选择subject
"""
import json
import logging
import random
@ -113,8 +116,8 @@ class Reader(object):
object = spo['object']['@value']
gold_spo_lst.append((subject, predicate, object))
subject_sub_tokens = covert_to_tokens(subject,tokenizer=self.tokenizer)
object_sub_tokens = covert_to_tokens(object,tokenizer=self.tokenizer)
subject_sub_tokens = covert_to_tokens(subject, tokenizer=self.tokenizer)
object_sub_tokens = covert_to_tokens(object, tokenizer=self.tokenizer)
subject_start, object_start = search_spo_index(tokens, subject_sub_tokens, object_sub_tokens)
predicate_label = self.spo_conf[predicate]

View File

@ -0,0 +1,267 @@
"""
不再随机选择subject而是将其全部flatten
"""
import json
import logging
from functools import partial
import numpy as np
import torch
from torch.utils.data import Dataset, DataLoader
from tqdm import tqdm
from deepIE.chip_rel.utils.data_utils import covert_to_tokens, search_spo_index
from utils import extract_chinese_and_punct
from utils.data_util import sequence_padding
chineseandpunctuationextractor = extract_chinese_and_punct.ChineseAndPunctuationExtractor()
class Example(object):
def __init__(self,
p_id=None,
raw_text=None,
context=None,
choice_sub=None,
tok_to_orig_start_index=None,
tok_to_orig_end_index=None,
bert_tokens=None,
spoes=None,
sub_entity_list=None,
gold_answer=None, ):
self.p_id = p_id
self.context = context
self.raw_text = raw_text
self.choice_sub = choice_sub
self.tok_to_orig_start_index = tok_to_orig_start_index
self.tok_to_orig_end_index = tok_to_orig_end_index
self.bert_tokens = bert_tokens
self.spoes = spoes
self.sub_entity_list = sub_entity_list
self.gold_answer = gold_answer
class InputFeature(object):
def __init__(self,
p_id=None,
passage_id=None,
token_type_id=None,
pos_start_id=None,
pos_end_id=None,
segment_id=None,
po_label=None,
s1=None,
s2=None):
self.p_id = p_id
self.passage_id = passage_id
self.token_type_id = token_type_id
self.pos_start_id = pos_start_id
self.pos_end_id = pos_end_id
self.segment_id = segment_id
self.po_label = po_label
self.s1 = s1
self.s2 = s2
class Reader(object):
def __init__(self, spo_conf, tokenizer=None, max_seq_length=None):
self.spo_conf = spo_conf
self.tokenizer = tokenizer
self.max_seq_length = max_seq_length
def read_examples(self, filename, data_type):
logging.info("Generating {} examples...".format(data_type))
return self._read(filename, data_type)
def _read(self, filename, data_type):
examples = []
gold_num = 0
with open(filename, 'r') as fr:
p_id = 0
for line in tqdm(fr.readlines()):
p_id += 1
data_line = json.loads(line.strip())
text_raw = data_line['text']
tokens, tok_to_orig_start_index, tok_to_orig_end_index = covert_to_tokens(text_raw,
tokenizer=self.tokenizer,
max_seq_length=self.max_seq_length,
return_orig_index=True)
tokens = ["[CLS]"] + tokens + ["[SEP]"]
if 'spo_list' not in data_line:
examples.append(
Example(
p_id=p_id,
raw_text=data_line['text'],
context=text_raw,
tok_to_orig_start_index=tok_to_orig_start_index,
tok_to_orig_end_index=tok_to_orig_end_index,
bert_tokens=tokens,
sub_entity_list=None,
gold_answer=None,
spoes=None
))
continue
gold_ent_lst, gold_spo_lst = [], []
spo_list = data_line['spo_list']
spoes = {}
for spo in spo_list:
subject = spo['subject']
gold_ent_lst.append(subject)
predicate = spo['predicate']
object = spo['object']['@value']
gold_spo_lst.append((subject, predicate, object))
subject_sub_tokens = covert_to_tokens(subject, tokenizer=self.tokenizer)
object_sub_tokens = covert_to_tokens(object, tokenizer=self.tokenizer)
subject_start, object_start = search_spo_index(tokens, subject_sub_tokens, object_sub_tokens)
predicate_label = self.spo_conf[predicate]
if subject_start != -1 and object_start != -1:
s = (subject_start, subject_start + len(subject_sub_tokens) - 1)
o = (object_start, object_start + len(object_sub_tokens) - 1, predicate_label)
if s not in spoes:
spoes[s] = []
spoes[s].append(o)
if subject_start == -1 or object_start == -1:
print('error')
print(subject_sub_tokens, object_sub_tokens, text_raw)
if data_type == 'train':
for s in spoes.keys():
examples.append(
Example(
p_id=p_id,
context=text_raw,
choice_sub=s,
tok_to_orig_start_index=tok_to_orig_start_index,
tok_to_orig_end_index=tok_to_orig_end_index,
bert_tokens=tokens,
sub_entity_list=gold_ent_lst,
gold_answer=gold_spo_lst,
spoes=spoes
))
else:
examples.append(
Example(
p_id=p_id,
context=text_raw,
tok_to_orig_start_index=tok_to_orig_start_index,
tok_to_orig_end_index=tok_to_orig_end_index,
bert_tokens=tokens,
sub_entity_list=gold_ent_lst,
gold_answer=gold_spo_lst,
spoes=spoes
))
gold_num += len(gold_spo_lst)
logging.info('total gold spo num in {} is {}'.format(data_type, gold_num))
logging.info("{} total size is {} ".format(data_type, len(examples)))
return examples
class Feature(object):
def __init__(self, max_len, spo_config, tokenizer):
self.max_len = max_len
self.spo_config = spo_config
self.tokenizer = tokenizer
def __call__(self, examples, data_type):
return self.convert_examples_to_bert_features(examples, data_type)
def convert_examples_to_bert_features(self, examples, data_type):
logging.info("convert {} examples to features .".format(data_type))
examples2features = list()
for index, example in enumerate(examples):
examples2features.append((index, example))
logging.info("Built instances is Completed")
return SPODataset(examples2features, spo_config=self.spo_config, data_type=data_type,
tokenizer=self.tokenizer, max_len=self.max_len)
class SPODataset(Dataset):
def __init__(self, data, spo_config, data_type, tokenizer=None, max_len=128):
super(SPODataset, self).__init__()
self.spo_config = spo_config
self.tokenizer = tokenizer
self.max_len = max_len
self.q_ids = [f[0] for f in data]
self.features = [f[1] for f in data]
self.is_train = True if data_type == 'train' else False
def __len__(self):
return len(self.q_ids)
def __getitem__(self, index):
return self.q_ids[index], self.features[index]
def _create_collate_fn(self):
def collate(examples):
p_ids, examples = zip(*examples)
p_ids = torch.tensor([p_id for p_id in p_ids], dtype=torch.long)
batch_token_ids, batch_segment_ids = [], []
batch_token_type_ids, batch_subject_labels, batch_subject_ids, batch_object_labels = [], [], [], []
for example in examples:
spoes = example.spoes
token_ids = self.tokenizer.encode(example.bert_tokens)[1:-1]
segment_ids = len(token_ids) * [0]
if self.is_train:
if spoes:
# subject标签
token_type_ids = np.zeros(len(token_ids), dtype=np.long)
subject_labels = np.zeros((len(token_ids), 2), dtype=np.float32)
for s in spoes:
subject_labels[s[0], 0] = 1
subject_labels[s[1], 1] = 1
# 随机选一个subject
# subject_ids = random.choice(list(spoes.keys()))
# 非随机选一个subject
subject_ids = example.choice_sub
# 对应的object标签
object_labels = np.zeros((len(token_ids), len(self.spo_config), 2), dtype=np.float32)
for o in spoes.get(subject_ids, []):
object_labels[o[0], o[2], 0] = 1
object_labels[o[1], o[2], 1] = 1
batch_token_ids.append(token_ids)
batch_token_type_ids.append(token_type_ids)
batch_segment_ids.append(segment_ids)
batch_subject_labels.append(subject_labels)
batch_subject_ids.append(subject_ids)
batch_object_labels.append(object_labels)
else:
batch_token_ids.append(token_ids)
batch_segment_ids.append(segment_ids)
batch_token_ids = sequence_padding(batch_token_ids, is_float=False)
batch_segment_ids = sequence_padding(batch_segment_ids, is_float=False)
if not self.is_train:
return p_ids, batch_token_ids, batch_segment_ids
else:
batch_token_type_ids = sequence_padding(batch_token_type_ids, is_float=False)
batch_subject_ids = torch.tensor(batch_subject_ids)
batch_subject_labels = sequence_padding(batch_subject_labels, padding=np.zeros(2), is_float=True)
batch_object_labels = sequence_padding(batch_object_labels, padding=np.zeros((len(self.spo_config), 2)),
is_float=True)
return batch_token_ids, batch_segment_ids, batch_token_type_ids, batch_subject_ids, batch_subject_labels, batch_object_labels
return partial(collate)
def get_dataloader(self, batch_size, num_workers=0, shuffle=False, pin_memory=False,
drop_last=False):
return DataLoader(self, batch_size=batch_size, shuffle=shuffle, collate_fn=self._create_collate_fn(),
num_workers=num_workers, pin_memory=pin_memory, drop_last=drop_last)

View File

@ -10,7 +10,7 @@ import torch
from transformers import BertTokenizer
from deepIE.chip_rel.config.config import CMeIE_CONFIG
from deepIE.chip_rel.etl_span_transformers.data_loader_ptms import Reader, Feature
from deepIE.chip_rel.etl_span_transformers.data_loader_ptms_total_sub import Reader, Feature
from deepIE.chip_rel.etl_span_transformers.train import Trainer
from utils.file_util import save, load
@ -43,7 +43,7 @@ def get_args():
parser.add_argument('--seed', type=int, default=42, help="random seed for initialization")
parser.add_argument("--debug",
action='store_true',)
action='store_true', )
# bert parameters
parser.add_argument("--do_lower_case",
action='store_true',
@ -77,35 +77,46 @@ def get_args():
def bulid_dataset(args, spo_config, reader, tokenizer, debug=False):
train_src = args.input + "/train_data.json"
dev_src = args.input + "/val_data.json"
test_src = args.input + "/test1.json"
train_examples_file = args.cache_data + "/train-examples.pkl"
dev_examples_file = args.cache_data + "/dev-examples.pkl"
test_examples_file = args.cache_data + "/test-examples.pkl"
if not os.path.exists(train_examples_file):
train_examples = reader.read_examples(train_src, data_type='train')
dev_examples = reader.read_examples(dev_src, data_type='dev')
test_examples = reader.read_examples(test_src, data_type='test')
save(train_examples_file, train_examples, message="train examples")
save(dev_examples_file, dev_examples, message="dev examples")
save(test_examples_file, test_examples, message="test examples")
else:
logging.info('loading train cache_data {}'.format(train_examples_file))
logging.info('loading dev cache_data {}'.format(dev_examples_file))
train_examples, dev_examples = load(train_examples_file), load(dev_examples_file)
logging.info('loading test cache_data {}'.format(test_examples_file))
train_examples, dev_examples,test_examples = load(train_examples_file), load(dev_examples_file),load(test_examples_file)
logging.info('train examples size is {}'.format(len(train_examples)))
logging.info('dev examples size is {}'.format(len(dev_examples)))
logging.info('test examples size is {}'.format(len(test_examples)))
convert_examples_features = Feature(max_len=args.max_len, spo_config=spo_config, tokenizer=tokenizer)
train_examples = train_examples[:2] if debug else train_examples
dev_examples = dev_examples[:2] if debug else dev_examples
test_examples = test_examples[:2] if debug else test_examples
train_data_set = convert_examples_features(train_examples, data_type='train')
dev_data_set = convert_examples_features(dev_examples, data_type='dev')
test_data_set = convert_examples_features(test_examples, data_type='test')
train_data_loader = train_data_set.get_dataloader(args.train_batch_size, shuffle=True, pin_memory=args.pin_memory)
dev_data_loader = dev_data_set.get_dataloader(args.train_batch_size)
test_data_loader = test_data_set.get_dataloader(args.train_batch_size)
data_loaders = train_data_loader, dev_data_loader
eval_examples = train_examples, dev_examples
data_loaders = train_data_loader, dev_data_loader, test_data_loader
eval_examples = train_examples, dev_examples, test_examples
return eval_examples, data_loaders, tokenizer
@ -138,7 +149,7 @@ def main():
# trainer.eval_data_set("train")
trainer.eval_data_set("dev")
elif args.train_mode == "predict":
trainer.predict_data_set("dev")
trainer.predict_data_set("test")
elif args.train_mode == "resume":
# trainer.resume(args)
trainer.show("dev") # bad case analysis

View File

@ -8,6 +8,7 @@ from warnings import simplefilter
import numpy as np
import torch
import torch.nn as nn
from tqdm import tqdm
import models.spo_net.etl_span_transformers as etl
@ -34,21 +35,23 @@ class Trainer(object):
self.model = etl.ERENet.from_pretrained(args.bert_model, classes_num=len(spo_conf))
self.model.to(self.device)
if args.train_mode == "predict":
if args.train_mode != "train":
self.resume(args)
# logging.info('total gpu num is {}'.format(self.n_gpu))
# if self.n_gpu > 1:
# self.model = nn.DataParallel(self.model.cuda(), device_ids=[0, 1])
logging.info('total gpu num is {}'.format(self.n_gpu))
if self.n_gpu > 1:
self.model = nn.DataParallel(self.model.cuda(), device_ids=[0, 1])
train_dataloader, dev_dataloader = data_loaders
train_eval, dev_eval = examples
train_dataloader, dev_dataloader, test_dataloader = data_loaders
train_eval, dev_eval, test_eval = examples
self.eval_file_choice = {
"train": train_eval,
"dev": dev_eval,
"test": test_eval
}
self.data_loader_choice = {
"train": train_dataloader,
"dev": dev_dataloader,
"test": test_dataloader
}
# todo 稍后要改成新的优化器,并加入梯度截断
self.optimizer = self.set_optimizer(args, self.model,
@ -193,7 +196,7 @@ class Trainer(object):
self.convert2result(eval_file, answer_dict)
with codecs.open('result_6.json', 'w', 'utf-8') as f:
with codecs.open('result_chip_0813v1.json', 'w', 'utf-8') as f:
for key, ans_list in answer_dict.items():
out_put = {}
out_put['text'] = eval_file[int(key)].raw_text
@ -224,12 +227,21 @@ class Trainer(object):
spo_em, spo_pred_num, spo_gold_num = 0.0, 0.0, 0.0
for key in answer_dict.keys():
context = eval_file[key].context
entity_pred = answer_dict[key][0]
entity_gold = eval_file[key].sub_entity_list
triple_pred = answer_dict[key][1]
triple_gold = eval_file[key].gold_answer
# if set(triple_pred) != set(triple_gold):
# print()
# print(context)
# print(triple_pred)
# print(triple_gold)
ent_em += len(set(entity_pred) & set(entity_gold))
ent_pred_num += len(set(entity_pred))
ent_gold_num += len(set(entity_gold))
@ -299,7 +311,7 @@ class Trainer(object):
context = eval_file[qid.item()].context
tok_to_orig_start_index = eval_file[qid.item()].tok_to_orig_start_index
tok_to_orig_end_index = eval_file[qid.item()].tok_to_orig_end_index
start = np.where(po_pred[:, :, 0] > 0.6)
start = np.where(po_pred[:, :, 0] > 0.5)
end = np.where(po_pred[:, :, 1] > 0.5)
for _start, predicate1 in zip(*start):

View File

@ -7,7 +7,7 @@ from utils import extract_chinese_and_punct
chineseandpunctuationextractor = extract_chinese_and_punct.ChineseAndPunctuationExtractor()
moren_tokenizer = BertTokenizer.from_pretrained('transformer_cpt/bert/', do_lower_case=True)
def covert_to_tokens(text, tokenizer=None, return_orig_index=False, max_seq_length=500):
def covert_to_tokens(text, tokenizer=None, return_orig_index=False, max_seq_length=300):
if not tokenizer:
tokenizer =moren_tokenizer
sub_text = []