diff --git a/run/entity_extraction/lstm_crf/main.py b/run/entity_extraction/lstm_crf/main.py index d4bc084..a05346a 100644 --- a/run/entity_extraction/lstm_crf/main.py +++ b/run/entity_extraction/lstm_crf/main.py @@ -62,7 +62,7 @@ def get_args(): parser.add_argument("--max_len", default=1000, type=int) parser.add_argument('--word_emb_dim', type=int, default=300) parser.add_argument('--char_emb_dim', type=int, default=300) - parser.add_argument('--hidden_size', type=int, default=300) + parser.add_argument('--hidden_size', type=int, default=150) parser.add_argument('--num_layers', type=int, default=2) parser.add_argument('--dropout', type=int, default=0.5) parser.add_argument('--rnn_encoder', type=str, default='lstm', help="must choose in blow: lstm or gru") @@ -96,7 +96,7 @@ def bulid_dataset(args, debug=False): char_emb, bichar_emb, bichar_vocab = None, None, None if args.use_static_emb: char_emb = StaticEmbedding(char_vocab, model_path='cpt/gigaword/uni.ite50.vec', - only_norm_found_vector=False).emb_vectors + only_norm_found_vector=True).emb_vectors if args.bi_char: bichar_vocab = Vocabulary(char_type='bichar', min_char_count=2) bichar_vocab.build_vocab(train_examples+dev_examples)